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Abstract

Understanding the dynamical behavior of proteins is a highly challenging area of cur-
rent research. Based on the progress in algorithmic methods and the increase of com-
putational power in the recent years, molecular dynamics simulations have emerged as
powerful tool to access molecular motions on time scales from femto- to milliseconds.
However, the resulting data is so overwhelming that a suitable interpretation framework
is needed in order to detect and analyse the essential dynamics of the system under
study. Frequently, following a dimensionality reduction to identify collective variables
x, the dynamics are described in terms of a diffusive motion on a low-dimensional free
energy landscape F (x). By using projection operator approaches, such as developed
by Zwanzig, it is possible to derive coarse-grained equations of motions for the collec-
tive variables, such as the generalized Langevin equation. Going further, by assuming
a time scale separation between the slow dynamics along the system coordinate x and
the fast fluctuations of the bath, this equation can be simplified to the (memory-less)
Markovian Langevin equation, which describes the system dynamics in terms of a de-
terministic drift, a Stokes’ friction and a stochastic force. Alternatively, an additional
step of coarse graining can be applied in order to account for the dynamics in terms of
jumps between metastable conformational states. By furthermore assuming that those
jumps are memory-free, a so-called Markov state model can be constructed.
In this thesis the virtues and shortcomings of data-based Markovian modeling are in-
vestigated. In particular, two modifications of the data-driven Langevin equation are
presented: the rescaled and the binned data-driven Langevin equation. While the for-
mer approach allows for the rescaling of the dissipative force of the model, the latter
concept enables the analysis of extensive MD data. In addition, it is investigated under
which conditions the data-driven Langevin equation can be applied in the nonequilib-
rium regime. By considering molecular dynamics simulations of several systems with
varying complexity it is shown that Markovian models can serve as powerful system
descriptions of nontrivial dynamics. First, an one-dimensional model of sodium chloride
in water and a five-dimensional model of the small Aib9 peptide are constructed. Then,
the Markovian framework is challenged by considering the dynamics of the 164-residue
T4 lysozyme, the unbinding of benzamidine from trypsin and the unbinding of a resor-
cinol scaffold-based inhibitor from the N-terminal domain of heat shock protein 90. The
latter two systems exhibit dynamics on the order of milliseconds or even seconds. To
investigate the nonequilibrium regime, the enforced dissociation of sodium chloride in
water and the pressure-jump induced nucleation and growth process in a liquid of hard
spheres are considered.
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1 Introduction

"The purpose of (scientific) computing
is insight, not numbers."

– Richard Hamming

Life in all its forms depends on many different types of biomolecules. One important
class of biomolecules, called proteins, plays a crucial role in the regulation and execution
of biological processes. Proteins were already discovered in 1789 by the French chemist
Antoine Fourcroy, who observed their ability to flocculate under the influence of heat or
an increase of the pH level [1]. Today, it is known that proteins form a highly diverse
group of biopolymers. While the smallest members consist of only a few amino acids,
the largest proteins are formed by multiple long chains of amino acids. Furthermore,
the biological function of proteins is very diverse as well. Among other things, they
determine the shape of cells, regulate the intra- and extracellular environment, perform
signal transduction and catalysis or replicate the DNA. For a long time it was assumed
that the function of any protein is solely determined by its three-dimensional structure
which in turn is based on the respective sequence of amino acids [2]. Nevertheless, it
was found by mutation studies [3] together with computational advances that the pro-
tein functionality also depends on its dynamics [4–8].
To study the structure of proteins, various experimental techniques, for example X-ray
crystallography and different spectroscopic approaches, have been used [9–11]. Still, the
direct experimental investigation of the microscopic protein conformation, which emerges
for physiological conditions, suffers from noise and experimental limitations. Addition-
ally, the dynamics of proteins appear on a wide range of time scales. While local bond
vibrations appear at scales of tens of femtoseconds or picoseconds, conformational tran-
sitions and structural rearrangements occur in the range of nanoseconds, microseconds
or even longer [8]. This diversity complicates experimental studies even further, since
different techniques need to be combined to obtain a comprehensive picture.
Based on advances in theory and the steady increase of computational power in recent
years, all-atom molecular dynamics (MD) simulations have become a powerful tool to
complement experimental studies [12–14]. Here, the dynamics of interest are modeled
using classical Newtonian equations of motion which are propagated using numerical
methods. The equations of motion are defined by empirical potential energy functions
called force fields [15–17], which account for microscopic effects like hydrogen bonds,
electrostatic interactions or van der Waals forces in a classical framework. Additionally,
experimental observations are used to refine the force fields. Still, although the numer-
ical propagation of classical equations of motion is much simpler than exact (a priori
quantum mechanical) calculations, even the most advanced computers are not able to
reach time scales of seconds for significant biomolecular systems since integration time
steps on the order of femtoseconds are needed to obtain reliable results. To overcome
this limitation many different enhanced sampling schemes were proposed [18–21]. These
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1 Introduction

approaches bias the numerical simulations in such a way that the processes of interest
appear more often, i.e., the needed computational times are reduced.
The result of MD simulations are extensive time series, so-called trajectories, which
record the atomistic details of the dynamics in terms of discretized snapshots at a finite
time resolution. This large amount of information is simultaneously a blessing and a
curse. One the one hand, the possibility to follow the trajectory r(t) of every simulated
atom can be very useful when investigating molecular details. On the other hand, the
immense scope of recorded details can overshadow the essential information needed to
understand the system dynamics. To facilitate the interpretation of the MD data, one
often performs a dimensionality reduction. Here, we aim for a few (say, less then ten)
collective coordinates {xi(t)} = x(t) which are able to resolve the most important char-
acteristics of the dynamics under study [22–27]. The choice of these coordinates defines
the free energy "landscape" F (x), which can be used to visualize the main properties of
the system, see for example Fig. 1.1. The energy minima represent metastable states
which interchange by passing the energy barriers between them [5–7]. Assuming that the
system coordinates are chosen in such a way that we can apply Kramers rate theory [28],
the height of the barriers directly accounts for the time scale of the interstate transitions.
Small barriers indicate frequent, short-living oscillations, while large barriers represent
sparse dynamics.
To further analyze the simulated data, it can be advantageous to construct a "post-
simulation" model which maps the dynamics along the system coordinates on a theo-
retical framework. To this end, one may use projection operator techniques [29–31] to
derive (in principle exact) equations of motions for these coordinates. The generalized
Langevin equation (GLE) is one possible result. Under certain conditions [32], the GLE
resembles a deterministic Newtonian equation of motion where the system dynamics are
driven by three forces. The first force, the deterministic drift field, can be interpreted
(depending on the projection [32]) as the gradient of the free energy in thermal equilib-
rium [14]. The second (dissipative) force includes the memory of the interactions of the
system coordinates with the neglected degrees of freedom (called "bath"). In thermal
equilibrium and under certain conditions [32] it can be related to the third force, which
represents a stochastic driving of the system. It is worth noting that the stochastic na-
ture of the latter force is a direct result of the dimensionality reduction where the bath
degrees of freedom were actively projected out. By furthermore assuming that the time
scales of the bath are much faster than the evolution of the system coordinates, it can
be possible to simplify the GLE to the Markovian Langevin equation (LE) [31–33]

Mẍ = −∇F (x)− Γ(x)ẋ+K(x)ξ, (1.1)

with ∇F (x) representing the drift field, the Stokes’ friction Γ(x)ẋ and the stochastic
force K(x)ξ which is usually called "noise". Here, the friction matrix Γ(x) is often inter-
preted as indicator of the "roughness" of the free energy [34, 35]. The stochastic variable
ξ is typically defined by 〈ξ〉 = 0 and 〈ξi(t1)ξj(t2)〉 = δ(t1−t2)δi,j . In equilibrium, friction
and noise are related by the fluctuation-dissipation theorem K(x)K(x)T = 2kBTΓ(x).
In case the parameters F (x), M, Γ(x) and K(x) are known, it is straightforward to
integrate Eq. (1.1) numerically to obtain a time trace similar to an MD trajectory. On
the other hand, in case we want to derive a model for the MD trajectory x(t), we need
to find a way to estimate the Langevin forces from the data [36–42]. In this thesis we
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1 Introduction

will adopt a data-driven Langevin equation (dLE) [43–45] that calculates the Langevin
forces locally in space and time. It will be shown that Eq. (1.1) represents a robust
approach to model biomolecular motions.

x1

t

x1

x1

x2

x1

x2

8

a
b

c

Figure 1.1: Dynamics of T4 lysozyme. (a) The 164-residue T4 lysozyme exhibits a
prominent hinge bending motion which can be quantified by the coordinate
x1 and x2. There are two main states, the open state (orange structure) and
the closed state (blue structure). (b) The dynamics along x1 alone indicate
only two metastable states but (c) when considering the free energy (in units
of kBT ) in both coordinates, we observe actually four states (white numbers)
explored by the MD trajectory (black line).

As more coarse-grained post-simulation model one can also aim for a Markov state
model of the dynamics of interest [46–55]. Here, we describe the system dynamics in
terms of memory-free jumps between its metastable states. Based on the assumption
that the free energy barriers account for the relevant system transitions, these states
can be defined via the minima of the free energy [56–61]. The condition of negligible
system memory requires a separation of time scales between fast intrastate dynamics and
rarely occurring interstate transitions. Note that this requirement is very similar to the
separation of time scales of system and bath leading to the Markovian Langevin equation
(1.1). Given that the state dynamics are truly memory-free, the system dynamics can
be described in terms of the transition matrix T (τ) containing the probabilities Tij that
the system jumps from state i to j within the so-called lag time τ . By defining the state
vector P (t) = (p1(t), . . . , pk(t))T with pi(t) representing the probability to be in state i
at time t, the time evolution of the system is given by

P (t=nτ) = Tn(τ)P (0). (1.2)
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1 Introduction

Just as the applicability of Markovian Langevin framework depends on properly chosen
system coordinates x, Markov state models rely on the careful definition of the states.
This modeling step is anything but trivial. In order to improve the Markovianity of a
given state separation, several methods have been proposed. For example, the concept
of "coring" demands that a transition must reach the core region of the target state to
be considered as valid [47, 62–64]. Alternatively, it may be requested that the trajectory
spends a minimum time in the new state to indicate a proper transition, i.e., coring can
be performed in a dynamical way [65, 66].
In this thesis we investigate the virtues and shortcomings of the data-based Marko-
vian modeling of several different biomolecular systems of varying complexity. Although
Markov state models are considered as well, we will mostly rely on the Langevin equa-
tion (1.1) via the dLE approach. First, we introduce the basic theory and methods
underlying our modeling framework in chapter 2 and 3 before the dLE is introduced in
chapter 4. Based on the study of a model GLE, we will see that the temporal resolution
δt of the dLE plays a similar role as the lag time τ of the Markov state model. Once δt
is larger than the memory time of the system, the dLE correctly approximates the GLE
dynamics, but if δt is too small the dLE will underestimate the friction Γ(x) and the
kinetics will become too fast. These findings motivate the formulation of the rescaled
dLE where we rescale the friction in such a way that the resulting Langevin dynamics
correctly account for the initial decay of the position autocorrelation function of the
data x(t). This correction resembles the concept of coring for Markov state models and
coarse-grained MD approaches where the time scale of the model is rescaled by compar-
ing the predicted diffusion behavior to the results of atomistic MD simulations [67–69].
By considering the dissociation and association of sodium chloride in water [42] as well
as the dynamics of the small Aib9 peptide [70] in chapter 5, we will see that the rescaled
dLE allows for the construction of robust Markovian Langevin models. Then, we chal-
lenge the approach in chapter 6 by considering a 60 µs-long all-atom MD trajectory of
T4 lysozyme [71] were optimal system coordinates and a reliable state partitioning are
still unclear [72].
Additionally, this thesis introduces the concept of the binned dLE which allows to ap-
ply the dLE framework to extensive data sets. Based on the way the dLE estimates the
Langevin forces, it is possible to "pre-average" the input data without harming the model
dynamics (chapter 4). As a practical application we consider in chapter 5 a large data
set [73] of AIB9 where it will be possible to reduce the number of data points by a factor
of 102 without harming the Langevin estimates. This shows that the dLE approach
represents a powerful tool to analyze, e.g., enhanced sampling data which consists of
numerous short MD simulations [73].
Although Langevin dynamics are significantly less time consuming to propagate than
all-atom MD simulations, it is still nontrivial to access time scales on the order of
microseconds or larger. First, one needs to find a way to parameterize the Langevin
model for such slow processes. At this point it is possible to use dissipation-corrected
targeted MD simulations [42]. This approach was specifically designed to determine one-
dimensional Markovian Langevin models of extremely slow dynamics based on constraint
MD simulations. Second, assuming that the Langevin model could be determined, the
direct integration of the Langevin equation would need prohibitively many time steps to
provide converged estimates of the slow dynamics. This thesis will present an elegant
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1 Introduction

way to circumvent this limitation based on Langevin simulations at high temperatures.
Called T-boosting, this approach exploits the well-defined connection between Langevin
kinetics and the temperature (chapter 3). By considering Langevin models of trypsin-
benzamidine and a N-terminal domain of a heat shock protein 90 inhibitor complex in
chapter 6, we will see that Langevin models are indeed able to predict times on the order
of seconds with reasonable accuracy.
Finally, this thesis extends the application of the dLE framework to the nonequilibrium
regime. Considering relaxation processes and externally driven dynamics, we will intro-
duce the necessary modifications of the dLE formulation. As applications we inspect in
chapter 7 the enforced dissociation of sodium chloride in water and the pressure-jump
induced nucleation and growth process in a liquid of hard spheres. Since these systems
were already studied with a nonstationary generalized Langevin equation [74, 75], it will
be possible to compare the Markovian modeling to memory-based approximations.
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2 Theory and methods

"Every point of view is useful, even those that are wrong
- if we can judge why a wrong view was accepted."

–Legion, Mass Effect 2

In this chapter we will inspect some fundamental topics which are not only important
for the discrete and continuous Markov modeling in this work, but also for the study
of biomolecular dynamics in general. First, molecular dynamics simulations are intro-
duced. Here, force fields as well as their numerical integration are briefly touched to
give an impression of the main ingredients of molecular dynamics. Going on it will be
discussed how to enable the interpretation of simulated data by means of a dimension-
ality reduction. This concept describes the search for a few essential coordinates hidden
in the, a priori high-dimensional, input data which makes it possible to interpret the
data by, e.g., Markov models. Afterwards we will introduce the free energy landscape
as well as the autocorrelation function. In the latter case it will be specified how to
treat data given by multiple short trajectory and how to inspect nonequilibrium data.
In the following section we will discuss the concept of states and transition statistics.
Just as dimensionality reductions, the definition of states represents a coarse graining
of the considered system dynamics, i.e., it simplifies the interpretation. Still, since the
definition of states is in general nontrivial, the chapter concludes with the introduction
of coring. This concept refines state separations by correcting wrong state assignments
in a geometrical or temporal way.

2.1 Molecular dynamics simulations

To analyze the motion of biomolecular systems, molecular dynamics (MD) simulations
provide a powerful framework to gather data in atomistic detail [13]. MD simulations
are, in most cases, purely classical, i.e., they cover the dynamics of N interacting atoms
in terms of Newtonian equations of motion

Mi
∂2r

∂t2
= −∇iV (r1, ..., rN ) (2.1)

where i = 1, ..., N holds and ∇iV represents the gradient of the potential energy V with
respect to particle i. This gradient, often called force field, is parameterized in such a
way that quantum effects can be incorporated into the classical equation (2.1). Several
force fields are available, like the different versions of AMBER [15] or GROMOS [16]
which can be employed using software packages like GROMACS [17]. The potential
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2 Theory and methods

energy V is typically a sum of the form

V (r1, ..., rN ) =
bond stretching∑

i,j

Kb
ij

2 (rij − r0
ij)2 (2.2)

+
bond bending∑

i,j,k

Kα
ijk

2 (cos(αijk)− cos(α0
ijk))2 (2.3)

+
proper dihedrals∑

i,j,k,l

Kφ
ijkl(1 + cos(mijklφijkl − φ0

ijkl))2 (2.4)

+
improper dihedrals∑

i,j,k,l

Kω
ijkl

2 (ωijkl − ω0
ijkl)2 (2.5)

+ Vnon-bonded(r1, ..., rN ) (2.6)

where bond stretching (2.2), bond bending (2.3) and improper dihedral angles (2.5) are
modeled by harmonic oscillators. The periodicity of proper dihedral angles motivates
the cosine in (2.4). The long range interactions represented by Vnon-bonded

Vnon-bonded(r1, ..., rN ) =
Lennard−Jones∑

i,j

(
Cij,12
∆r12

ij

− Ci,j,6
∆r6

ij

)
(2.7)

+
Coulomb∑

i,j

1
4πε0

δiδj
∆rij

(2.8)

contain the Coulomb interaction (2.8) between the two atoms i and j with a distance
of ∆rij and the Lennard-Jones potential (2.7) as approximation of the van der Waals
interaction between i and j. The different equilibrium values (r0

ij , α0
ijk, φ0

ijkl, ω0
ijkl) as

well as the force constants (Kb
ij , Kα

ijk, K
φ
ijkl, Kω

ijkl), partial charges δi and Lennard-Jones
coefficients Cij,12, Cij,6 are determined by fitting them to experimental data and by eval-
uating ab-initio or semi-empirical quantum mechanical calculations.
Once V (r1, ..., rN ) is defined, we can simulate a system in the micro-canonical ensem-
ble by numerically integrating the equations of motion. Here, some desired starting
configuration, like an energy minimized structure with Maxwell-Boltzmann distributed
velocities, is chosen. Then, a so-called integrator is used to propagate the dynamics.
Many different integrators are available. The Leapfrog integrator

ṙi

(
t+ δt

2

)
= ṙi

(
t− δt

2

)
− ∇iV (r1, ..., rN )

Mi
δt (2.9)

ri(t+ δt) = ri(t) + ṙi
(
t+ δt

2

)
δt (2.10)

is a prominent example used in many MD simulations. Although it is relatively simple,
this integrator has the advantages of being time-reversal as well as symplectic, i.e., it
preserves the energy of the considered system. In case the system is coupled to some
environment, like a surrounding fluid, some thermostat needs to be included to simulate
an NVT-ensemble. The Bussi thermostat [76] is often used at this point. For NPT-
ensembles a barostat, like for example the Berendsen barostat [77], is needed. Since the
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details of MD simulations do not represent a key aspect of this thesis and since there are
numerous comprehensive references like the GROMACS manual [17], we do not consider
these concepts here in detail.
As result, MD simulations provide a time trace, or trajectory, r(nδt) which covers the
simulated time evolution as snapshots at multiples of the integration time step δt. Typi-
cally, time steps on the order of fs are used, i.e., it is computationally expensive to reach
time scales of ms or even µs by brute-force integration since ∇iV (r1, ..., rN ) needs to
be evaluated for every particle i at every time step. In consequence, enhanced sampling
schemes [20] were proposed which, e.g., manipulate the force field ∇iV (r1, ..., rN ) to
speed up the system dynamics so that shorter simulations need to be performed. There
are plenty of enhanced sampling strategies like umbrella sampling [21], replica exchange
MD [18] or metadynamics [19], to name a few.

2.2 Dimensionality reduction

While the access to atomistic scales is one key value of MD simulations, the extremely
high dimensionality of the delivered data poses significant challenges. First, it is almost
impossible for the human mind to understand the full complexity of the concerted motion
of N > 100 single atoms by just inspecting the time traces of the different coordinates.
Second and even more important, most parts of the full dimensional space explored
by MD stay untouched or are only sparsely sampled since the high-dimensional volume
scales ∝ ∏3N

i=1(rmax,i − rmin,i). This impedes reliable statistical analysis [78]. Luckily,
it was found that protein dynamics, as considered in this thesis, can be projected to
a rather low-dimensional manifold with just 5 ≤ d ≤ 10 degrees of freedom [79–81].
Hence, the determination of these d essential coordinates, also called reaction or collective
coordinates, represents a natural first step to analyze MD data. It is also mandatory as
preparatory step to apply the modeling approaches discussed later in this thesis. Only
if the system is sufficiently simple or if one is already very familiar with it, the so-called
dimensionality reduction can be done by human intuition. In general it is necessary to
apply some computational approach, various elaborated nonlinear techniques [82–85] or
approaches based on machine learning [72, 86–89] were developed. At this point we will
only consider the relatively simple principal component analysis (PCA) [90, 91] since it
is sufficient to understand the main concepts of dimensionality reduction.
Every dimensionality reduction is based on the assumption that some characteristic of
the data, given in the input coordinates x = (x1, x2, ..., xM ), like particle positions or
distances, can be used to find the essential coordinates. The PCA supposes that the
eigensystem of the covariance matrix

Covi,j = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (2.11)

reveals the important system dynamics. By ordering the eigenvalues in descending order,
λ1 ≥ λ2 ≥ ... ≥ λ3N , the eigenvector v1 represents the direction of maximal variance
while v2 covers the second most variance orthogonal to v1 and so on. Fig. 2.1 illustrates
the concept. The principal components (PCs) PCi are given by projecting x on the
eigenvectors

PCi = vTi · x (2.12)
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so that the variance of PCi equals λi.

2 2

1 1PC

PC

x

x

Figure 2.1: Concept of the PCA. Starting with some data set (red crosses) given in
the coordinates x1 and x2, the PCA can be understood as the rotation to
the new coordinates PC1 and PC2 where PC1 represents the direction of
maximal variance.

The cumulative variance

Λ =
3N∑
i=1

λi (2.13)

is often dominated by the first d < 10 eigenvalues. In consequence, a natural next step
is to discard all PCs which do not contribute much to Λ which leads to the wished low-
dimensional system description. In case of Fig. 2.1, PC2 would be discarded since most
variance is covered by PC1. As the most important feature of the distribution (the sep-
aration between the two point clouds) can be covered by PC1 alone, this dimensionality
reduction works as intended. The most important characteristics of the data are pre-
served although one coordinate was discarded. Nevertheless, if the separation between
the two point clouds would be smaller than the orthogonal noise, PC1 and PC2 would
have changed the order. Consequently, we would have discarded the wrong coordinate
and the two point clouds would have overlapped, i.e., the cumulative variance would
have been misleading. Because of this, other dimensionality reduction methods choose
the low-dimensional space based on the consideration of time scales. The time-lagged
independent component analysis (TICA) [92–94], a variation of the PCA, represents an
example for this approach. Interpreting the two point clouds in Fig. 2.1 as free energy
minima separated by a lowly populated barrier which is rarely crossed, see Sec. 2.3,
PC1 represents the direction of the slowest time scale and would be detected by TICA
independent of its variance.
Besides the choice of a suitable dimensionality reduction method, it is also important
to use the right input coordinates x. The apparently most obvious choice of Cartesian
coordinates proves problematic for flexible structures like proteins since it is difficult
to separate internal motions from global rotations due to the lack of a single unique
reference structure which could be used to identify the latter [95]. This problem can
be circumvented by using internal coordinates like atom distances or dihedral angles
[27]. While distances are unproblematic from perspective of the PCA, the circularity
of dihedral angles makes it difficult to define means and variances. By using sine and
cosine of the angles as input coordinates of the PCA, this problem can be avoided. To
underline the use of periodic data, this variation of the PCA is often called dihedral PCA
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(dPCA) [91, 96]. Though, the nonlinearity of sine and cosine leads to distortion effects
and the artificial doubling of the input coordinates is suboptimal as well. As solution
the dPCA+ was developed [97]. It shifts the periodic boundary of the dihedral angles
to the region of lowest point density so that the angles can be used directly.

2.3 Free energy
The free energy landscape (FEL) F (x), with x representing an d-dimensional reaction
coordinate, can be used to investigate statistical properties of the considered system, see
[4, 5, 98]. It is defined by

F (x) = −kBT ln(P (x)) + const (2.14)

with the Boltzmann constant kB, temperature T and the probability distribution P (x).
The added constant in Eq. (2.14) is typically used to set Fmin = 0. We note that F (x)
highly depends on the chosen x. Assuming, for example, that x = (PC1, ...,PCd) was
determined by a PCA, see Sec. 2.2, the free energy represents the projection

F (x) ∝ −kBT ln
(∫

dPCd+1...

∫
dPCM P (x,PCd+1, ...,PCM )

)
(2.15)

with PCd+1, ...,PCM representing discarded higher PCs. Given that x was chosen well,
F can be used to identify metastable states in form of local minima, see Sec. 2.5. The
connectivity of the states, i.e., which transitions occur, and the energy barriers separating
them can be seen as well. The resulting free energy should reveal all important barriers
and minima so that we can conclude again that an appropriate choice of x is crucial.
At the same time, x should be as low dimensional as possible to optimize the statistical
reliability and the interpretability of the data.

2.4 Autocorrelation
While the FEL (2.14) provides many information on the statistics of the considered
system, dynamical properties, like characteristic time scales of x or transition times
between minima, are, in general, only approximately predictable by investigating the
barriers. Hence, other observables need to be considered. One possible choice, which
uses the temporal information stored in the trajectory x(t), is the (time lagged) auto-
correlation C(τ). For some one-dimensional trajectory x(t), given as discrete time series
recorded in equilibrium with time step δt, the autocorrelation is defined by

C(τ) = 〈(x(t)− 〈x〉t)(x(t+ τ)− 〈x〉t)〉t
〈(x(t)− 〈x〉t)2〉t

= Cov(x(t), x(t+ τ))
Cov(x, x) (2.16)

with the lag time τ and the average 〈...〉t taken over all times t ∈ {0, δt, 2δt, ..., (T − τ)}
where T denotes the length of the trajectory. It is assumed that mean and variance of
x(t) exist and do not change over time (because of the fact that equilibrium dynamics are
considered) so that C(τ) will only depend on the lag time τ . Since Eq. (2.16) includes
the variance in the denominator, C(τ) starts at C(0) = 1.
In case the recorded data consists of a set of trajectories x1(t), x2(t)..., xN (t) with N

15



2 Theory and methods

representing the number of trajectories, the averages 〈...〉t in Eq. (2.16) need to be
extended to 〈...〉i,t with i representing the average over the N subtrajectories. Hence,
global means and standard deviations have to be used instead of the individual values of
the different trajectories. This results from the consideration that every subtrajectory of
the set x1(t), x2(t)..., xN (t) represents similar dynamics, i.e, mean and standard deviation
should not depend on the individual subtrajectory. Note that this consideration only
plays a role once the individual trajectories are too short to individually reach global
equilibrium because at this point global and individual means and standard deviations
are the same.
Considering the interpretation of C(τ), it can be stated that most biomolecular dynamics
x(t) are exposed to some sort of noise with accumulating influences for increasing τ .
Trajectory points separated by a large τ become statistically independent in consequence
and C(τ) → 0 for τ → ∞ can be observed. The decay time can be seen as estimation
of the time scale on which the coordinate x varies. If x resolves different processes
at different time scales, the autocorrelation reveals various decay times. This can be
covered by using a multi-exponential ansatz C(τ) = ∑

cie
−τ/τi [99] where τi represents

the time scale of the i-th process. If a single process j has a much slower time scale than
the others, this approach will again reduce to a mono-exponential function for large τ

C(τ) ≈ cje−τ/τj . (2.17)

Although the different τj can be understood as estimations of the time scales of the
system, it needs to be noted that the various τj represent highly averaged quantities.
Individual transitions between two specific minima of the free energy are not resolved if
the system shows more than those two minima, for example.
Up to this point it was assumed that we investigate equilibrium dynamics, i.e., C(τ)
only depended on a single time τ . Still, in case we investigate nonequilibrium dynamics,
e.g., a system which is exposed to an external time-dependent force, see Sec. 7.1.1, the
autocorrelation needs to include a second time variable

C(t, t+ τ) = 〈(x(t)− 〈x(t)〉i)(x(t+ τ)− 〈x(t+ τ)〉i)〉i
〈(x(t)− 〈x(t)〉i)2〉i

. (2.18)

Here, mean and standard deviation depend explicitly on the time t, i.e., the averaging
〈...〉i cannot be done along a single trajectory x(t) but needs to be performed using a set
of independent trajectories x1(t), x2(t)..., xN (t). The trajectories xi(t) need to have the
same initial conditions since nonequilibrium dynamics are very sensitive at this point.

2.5 State definition and transition statistics
To deepen the analysis of system dynamics of interest, it might be advantageous to
inspect dynamical observables which are more detailed than the autocorrelation. At
this point it can be useful to partition the conformational space of the considered system
into states so that transition statistics can be calculated and interpreted. Such states
represent clusters of points which are sufficiently similar to be grouped together without
losing important information, i.e., the definition of states can be understood as a coarse
graining.
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Assuming that the reaction coordinates x cover all important information of the system,
it is straight forward to define states as shown in Fig. 2.2. The four minima of the free
energy, see Sec. 2.3, resolved in the two coordinates x1 and x2 represent large clusters of
similar points, i.e., they are suitable state centers. The sparsely populated barriers can
be used as borders between the states since only a few points might be assigned to the
wrong state if the border is not perfectly drawn.
While it is simple, or at least possible, to detect minima and barriers by visual inspection
for d < 4 dimensions, computational assistance is needed once d becomes larger. Most
algorithms used today, also in other scientific fields, are of the k-means type [100]. In the
simplest version of k-means the N available data points are separated into K clusters
by minimizing the sum ∑k

i=1 σ
2
i of the squared errors σ2

i = ∑Ni
j=1(xj−µi)2 with µi being

the mean of cluster i and xj representing the Ni points assigned to this cluster. This
approach works well if spherically shaped states can be found, like the ones in Fig. 2.2,
but struggles if states are entwined so that cluster centers of different states overlap. In
addition, the number of clusters K needs to be given as input parameter which means
that significant information must be known beforehand. If this is not the case, numerous
different K need to be tested without any guarantee that the best K can be detected
unambiguously.
Even though there are various modifications and improvements of this simple k-means
ansatz, the mentioned problems are, due to the design of k-means, to some extend
indispensable. Hence, many density-based clustering approaches have been formulated
as alternative [56–61]. These algorithms do not establish all states at once, like k-
means does, but use high density regions of the conformational space as "seeding" points
of the different states to which data points from regions with less density are assigned
successively. In this way the hierarchical nature of the considered free energy is exploited
to circumvent the predefinition of the final number of states and to find a state separation
which, in principle, does not struggle with irregularly shaped state borders.

1

2 3

4
x

1x 1x

2x 2x

Figure 2.2: Definition of states. One possibility to define the states of some system
is based on the investigation of the free energy. Since the minima represent
sets of similar (from perspective of the chosen reaction coordinates) system
configurations, i.e., configurations which appear relatively often, it makes
sense to interpret them as the desired states.

Although the choice of a suitable clustering algorithm is undoubtedly very important,
we should not forget at this point that the quality of the resulting clustering ultimately
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depends on the chosen reaction coordinates x as well. If some important state separations
are not resolved from the very beginning, they cannot be detected by any clustering.
Fig. 2.2 can be used to illustrate the problem. If we used only x1 to describe the
system, the states 1 and 2, as well as the states 3 and 4, would overlap completely. As
consequence, when applying some clustering to this data, we could only separate two
states. It could be argued that there are approaches to define states without the need of
a prior dimensionality reduction [101] but practice shows that the computational costs
are too high to process sufficiently large numbers of data points. Hence, the problem of
choosing a suitable x which resolves all relevant minima and energy barriers can hardly
be circumvented.
Assuming that we found a reasonable state separation, we can inspect the observed
transition statistics to analyze the connectivity of the states. As first step to do so, the
count matrix N(τ) is determined. The elements Nij(τ) are just the number of transitions
from state i to state j which are observed within a fixed lag time τ . The transition matrix
T (τ) follows from N(τ) by simple row-normalization, i.e., for the elements of T (τ) holds

Tij(τ) = Nij(τ)∑K
l=1Nil(τ)

(2.19)

with K being the number of states. Obviously, Tij(τ) can be understood as the proba-
bility to jump from state i to state j within τ . Based on T (τ), the rate matrix

k(τ) = 1
τ
T (τ) (2.20)

follows immediately. We note that all three matrices N(τ), T (τ) and k(τ) heavily de-
pend on the used lag time τ . For small τ the matrices resolve fast oscillations between
neighboring states, i.e., those lag times are prone to overestimate the real transition
dynamics due to wrongly assigned data points on or close to the barrier. Large τ , on
the other hand, overlook many short-time dynamics which are maybe important to un-
derstand the process of interest. In consequence, it is important and often non-trivial
to choose an appropriate lag time τ to resolve the observed state dynamics. Since the
transition matrix T (τ) represents the cornerstone of the popular Markov state models
(MSMs) [46–48, 50, 52–55] there are a lot of scientific studies on the question of finding
the right τ . MSMs play a prominent role in this thesis and are introduced below in Sec.
3.1.
As last dynamical observable associated with interstate dynamics we introduce the aver-
age waiting time τwait,i,j . It describes the average time between the first trajectory point
assigned to state i and the first following point that belongs to state j. While T (τ)
includes (mostly) dynamics between neighboring states, τwait,i,j measures long range
dynamics if i and j are far apart, i.e, it provides more global insights. Being less micro-
scopic, τwait,i,j represents an experimentally accessible observable.

2.6 Coring of state dynamics
As already touched in the last section, separating a low-dimensional system space into
discrete states can be problematic once the barriers are only sparsely sampled or the
system coordinates x do not resolve the full state separation. For example, once the
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free energy shown in Fig. 2.2 is projected on x1, only two instead of four states can be
resolved. But even if all states are still resolved in some low-dimensional state, it is not
guaranteed that the state separation turns out to be trivial since the state connectivity
can be problematic. Fig. 2.3 illustrates this problem. Here, a two-dimensional model
system reveals two distinct states A and B which are connected by a curved transition
path. Once the observed dynamics are projected on a single coordinate, the pathway
crosses the projected free energy barrier several times per transition. In consequence, if
the two states of the projected system are defined by simply cutting at the top of the
barrier, the resulting transition matrix will overestimate the system dynamics since it
counts too many jumps between the states.
To solve, or at least weaken, this problem, the concept of coring can be applied. Here,
state cores are defined by identifying some region around the center of the state where a
certain percentage of the total state population can be found. In Fig. 2.3, such regions
are indicated by the shaded grey areas. Any transition from state A to state B has to
reach the core region of state B before it is counted in the transition matrix. For the
example considered in Fig. 2.3, this approach solves the problem of wrongly projected
transition pathways.

1x 1x

2x F/G/k TBΔ

a b

Figure 2.3: Idea of coring. (a) The two-dimensional model system consists of two
states A and B connected by a single transition path. (b) Once the system
dynamics are projected to a single coordinate x1, the transition path can-
not be resolved properly and the individual transitions apparently cross the
central free energy barrier several times. Simply cutting the two states at
the central barrier would lead to an overestimation of the inspected dynam-
ics due to the recrossings of the barrier. Defining state cores (grey regions)
or demanding a minimal lifetime to count state transitions (see text) can
circumvent this problem. Panels are taken from [66].

While geometrical cores are often used to refine observed state dynamics [47, 62–64], it
becomes cumbersome to define the state borders for high-dimensional systems especially
if the states become relatively broad or show several subminima. Here, it can help to
define state cores not in space but in time. This ansatz, called dynamical coring, scans all
observed transition events and demands that the trajectory has to spend at least some
minimal τlag in the reached state before the transition is considered as valid [65, 66].
Once this condition is not fulfilled, the trajectory points of the short-living transition
are reassigned to the previously visited state. If we assume that the considered system
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behaves according to a Markov state model, see Sec. 3.1, we will have a simple heuristic
to choose the so-called coring time τlag, i.e., it will not be arbitrary [65].
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"Selig sind die Vergesslichen... [Blessed are the forgetful...]"
–Friedrich Nietzsche, "Jenseits von Gut und Böse", (1886)

Having introduced several fundamental concepts, this chapter considers the more spe-
cialized theory of discrete and continuous Markov models. In the first section we consider
the different characteristics of Markov state models. This approach separates the confor-
mational space of the system under study into several discrete states and combines the
observed transition statistics to a single transition matrix. This matrix represents the
key observable of Markov state models and needs to fulfill several conditions. Afterward
we will introduce the Langevin framework which covers the considered system dynamics
in terms of free energy, friction and stochastic noise. In contrast to Markov state models,
Langevin equations directly work on the system coordinates x, i.e., their dynamics are
continuous. Here, we will recapitulate the phenomenological derivation of the Langevin
equation formulated by Paul Langevin [102] before a microscopic derivation following
Robert Zwanzig [31] is presented. One version [32] of the generalized Langevin equa-
tion, which includes system memory, will be introduced and simplified to the Markovian
Langevin equation which represents the main model framework used in this thesis. Since
Langevin equations are only rarely accessible by analytical calculations, we will subse-
quently consider numerical integrators which can be used to generate trajectories x(t) for
further analysis. At the end of this chapter the concept of T-boosting is introduced. This
approach allows to reduce the computational time needed to obtain converged Langevin
dynamics via numerical integration.

3.1 Markov state models
Having divided the conformational space into K states as described in section 2.5, the
question arises of how to interpret the observed dynamics. Markov state models (MSMs)
are often used at this point due to their conceptional simplicity and the extensive the-
oretical developments established in the recent years [46–55]. In the following we will
recapitulate the basic features of MSMs.
As already indicated by its name, an MSM assumes that the system dynamics observed
in state space can be approximated by a Markov chain. Finding the system in state
St = i at time t, this condition implies that the conditional probability to reach state j
after some lag time τ , P (St+τ = j), obeys

P (St+τ = j) = P (St+τ = j|St = i, St−τ = h, ..., S0 = g) = P (St+τ = j|St = i), (3.1)

where we assumed equilibrium dynamics, i.e., no explicit dependence on the time. We
see that all trajectory points preceding St do not influence the probability of the next
step St+τ , the system exhibits no memory. This property makes MSMs very powerful
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since, theoretically, numerous short data trajectories of length τ are sufficient to predict
the long-time dynamics of the system under study, i.e., the data does not need to be in
global equilibrium as long as all existing state transitions are observed often enough. In
practice, however, the data trajectories should be significantly longer than the lag time
since τ needs to be validated by comparing MSM dynamics to the data, see below.
Another consequence of Eq. (3.1) is that any given input trajectory recorded with the
time step δt = τ/n, n ∈ N, can be analyzed highly efficiently by separating it into
sub-trajectories S0 → Sτ ..., Sδt → Sτ+δt..., ..., Sτ−δt → S2τ−δt... to construct the MSM
based on this ensemble. This "sliding window" approach allows to test different τ when
constructing an MSM without the problem of losing a lot of data for large τ .
When assembling the probabilities P (St+τ = j|St = i) to the matrix T ′(τ), it turns
out that the maximum likelihood estimator of T ′ is exactly T (τ) from Eq. (2.19) [52],
just as it is intuitively expected. To provide a valid MSM, T (τ) needs to fulfill several
conditions. First of all, the transition dynamics have to be ergodic. This means that all
states need to be dynamically connected, i.e., each state i can be reached when starting
at any other state j after waiting long enough and each state is visited infinitely often
for t → ∞. Secondly, based on the Markov condition Eq. (3.1), the transition matrix
needs to fulfill the Chapman-Kolmogorov equation

T (τ)n = T (nτ) (3.2)

with n = 1, 2, 3, 4, 5, .... This equation explains how an MSM predicts long-time observ-
ables based on short-time dynamics. Together with the ergodicity of the dynamics, Eq.
(3.2) allows to define the unique stationary distribution peq based on an arbitrary initial
distribution p = (p1, p2, ..., pK) with ∑K

i=1 pi = 1 via

lim
n→∞

Tn(τ)p = peq (3.3)

which additionally shows that T (τ)peq = peq holds. The elements pi,eq of peq describe
the share of trajectory points belonging to state i when evaluating a data trajectory in
global equilibrium. The stationary distribution allows for the formulation of the last
condition on T (τ) considered in this section: the condition of detailed balance. Since
the modeled equilibrium process evolves in thermal equilibrium, reversibility needs to
be fulfilled which translates to

Tij(τ)pi,eq = Tji(τ)pj,eq (3.4)

which simply means that the number of transitions from state i to j need to be equal
to the number of transitions in the opposite direction. Eq. (3.4) prevents the emergence
of "loops" in state space, i.e., patterns of shape i→j→k→i, which could act as perpetua
mobilia by producing work without any influx of external energy.
Up to this point we assumed that the lag time τ used to construct the MSM is known or
trivial to choose. In practice this is not true, τ needs to be long enough to overlook all
memory effects due to, e.g., short-living oscillations at the state borders. Fortunately,
Eq. (3.2) provides possibilities to find a suitable τ where the inspection of the implied
time scales represents the most widely used approach. To calculate the implied time
scales we first need to determine the eigenvalues λi(τj) of T (τj) with i = 0, 1, ...,K − 1
for a range of lag times τj . The largest eigenvalue λ0(τj) = 1 is associated with the
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stationary distribution, as we see in Eq. (3.3), and the other eigenvalues can be ordered
from large to small λ0(τj) ≥ λ1(τj) ≥ λ2(τj) ≥ ... ≥ λK−1(τj) ≥ 0. Then, the implied
time scales are defined by

ti(τj) = − τj
ln(λi(τj))

. (3.5)

They are ordered from large to small just like the eigenvalues. It should be noted that
the different ti(τj) can be associated with the relaxation time scales of the considered
system which can be determined by experiments. When inspecting Eq. (3.2) we see that
λi(nτ) = λi(τ)n is expected, i.e., the implied time scales of a valid MSM should be con-
stant for varying τ . In practice, one typically observes strongly increasing implied time
scales for small τ followed by approximately constant plateaus for τ > τ0. Assuming
that the states were defined based on the free energy as described in Sec. 2.5, this can
be explained by artifacts introduced by the projection on the low-dimensional system
coordinates which might lead to misclassified trajectory points on top of the barrier [47].
Additionally, barrier regions are notoriously undersampled which impedes the correct
assignments of the trajectory points even more. Another reason for an increase of the
implied time scales could be that the state splitting is simply non-Markovian for time
resolutions τ < τ0. Independent of the actual reason, τ0 represents the smallest possi-
ble lag time to construct a valid MSM. While the implied time scales provide a way to
choose a sufficiently large τ , it needs to be noted that the upper bound on τ is practically
defined by the smallest time which should be resolved by the model. Hence, it advisable
to always use the smallest possible τ since this optimizes the informative value of the
MSM.
As additional check of the reliability of a given MSM, it is possible to perform a so-called
Chapman-Kolmogorov test [66]. This test calculates the probabilities pi(t; τj) to be in
state i after time t given that the system started in the very same state i at t = 0. Once
the left side of Eq. (3.2) is used to predict pi(t; τj), i.e., T (τj) is repeatedly multiplied
with p(0), and once the right side, i.e., T (t) is calculated and multiplied a single time
with p(0). T (τj) represents a valid MSM if both calculations yield the same prediction of
pi(t; τj) for all t > τj . Compared to the implied time scales, the Chapman-Kolmogorov
test has the advantage that it provides a direct observable for every state while T (τj)
needs to be diagonalized to derive the eigenvalues λi(τj). This makes it simpler to iden-
tify problematic states via the Chapman-Kolmogorov test.
Another consequence of Eq. (3.2) is that the probability Pstay,n(t) to stay in state n
for a least the time t is expected to decay exponentially. Still, once trajectory points
on the barrier are misclassified, intrastate fluctuations are misinterpreted as short-living
interstate dynamics, see Sec. 2.6, and Pstay,n reveals a fast initial decay. One possibility
to optimize Pstay,n is to simply reassign the misclassified points via dynamical coring,
see Sec. 2.6. Here, the removal of the fast initial decay of Pstay,n is used to calibrate
the coring time τlag, i.e., coring is applied in a self-consistent manner [65]. It is possible
to define individual times τlag,i for the different states i to minimize the influences of
coring. Alternatively, it is also possible to define geometrical state cores by optimizing
Pstay,n(t).
In case the MSM of a given state separation fails in the different checks for the relevant
range of τj even after coring, i.e., the MSM fails for lag times which are small enough to
resolve the dynamics of interest, we have to find better states. One strategy to improve

23
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the state separation is to derive metastable states from a large number of microstate via
an appropriate lumping [61, 64, 103, 104]. Afterwards, one may optimize the transition
matrix of the resulting state separation such that an MSM reproduces some key observ-
able like, e.g., the state populations [105]. Alternatively, in case T (τj) works for large τj ,
we can use hidden Markov models to access smaller lag times [106, 107]. Those models
take the past of the individual trajectory points into account, i.e., the Markov model is
extended by some sort of rudimentary memory.
Assuming that we found a consistent τ for a suitable state separation of the system
under study, we need to find a way to inspect the overall system dynamics, e.g., average
waiting times, predicted by the MSM. To this end it is possible to generate Markov
chain Monte Carlo (MCMC) simulations were uniformly distributed random numbers
between zero and one are used to generate a surrogate trajectory in state space based
on the transition matrix T (τ). This model trajectory can be analyzed and compared to
the reference MD simulations.
To conclude this section, it is worth noting that it is also possible to apply the MSM
framework to nonequilibrium dynamics [108, 109]. But since we are not using this gen-
eralization later in this thesis, we will not consider it here in detail.

3.2 Markovian Langevin equation

Having discussed the discrete Markov modeling of state dynamics in the last section, we
will now inspect the Markovian Langevin framework. This approach allows for the con-
tinuous modeling of dynamics of interest directly based on a set of reaction coordinates
x, i.e., it circumvents the definition of states. First the phenomenological derivation of
Paul Langevin [102] is considered before we inspect a more rigorous derivation following
Robert Zwanzig [31].

3.2.1 Phenomenological derivation

The Langevin equation (LE) was formulated by Paul Langevin to describe the motion
of a Brownian particle through some surrounding fluid [102]. The same problem was
treated by Albert Einstein [110, 111] and Marian Smoluchowski [112] only a few years
earlier using a different approach. Even today, more than hundred years later, many
textbooks introduce the Langevin equation in similar ways [31, 33], i.e., it is worth
starting at this point here as well. We will follow the argumentation of Langevin.
To set the stage we consider a spherical particle of radius a and mass M in thermal
equilibrium. It is surrounded by some isotropic fluid characterized by its viscosity η.
The fluid constituents are assumed to be much lighter and smaller than the Brownian
particle. Due to the isotropy of the problem, it is sufficient to only consider the motion
along one direction x(t) with momentum p(t) since y(t) and z(t) behave in the same
way. The equation of motion of x is given by

Mẍ = ṗ(t) = Ftot(t)

with Ftot(t) being the total force at time t. Assuming that external fields, like e.g., grav-
itation, can be neglected, Ftot(t) represents the interaction of particle and surrounding.
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Assuming furthermore that the motion of the Brownian particle does not cause any tur-
bulences, the first part of Ftot(t) can be approximated by the well known Stokes friction
[113]

Ffric(t) = −6πηaẋ(t)

which acts opposed to the velocity ẋ(t) and can be seen as the energy loss induced by
collisions of the Brownian particle with the constituents of the fluid. Still, the Brownian
particle does not only push the fluid particles away but there are also collisions the other
way round. Since these collisions are numerous and random in direction and strength,
they can be summed up to a random force

Frandom(t) = N(t)

which can be interpreted as system noise. Summing both force contributions gives the
LE of the Brownian particle

ṗ(t) = −γẋ(t) +N(t) (3.6)

with γ = 6πηa. The noise N(t) shows different characteristics. Due to the isotropy of
the fluid it is safe to state that the mean of N needs to be zero. In addition, considering
the mass difference between Brownian particle and fluid constituents, it can be assumed
that the Brownian particle evolves on a much slower time scale than the fluid, i.e., the
latter forgets any interaction with the former instantaneously. This means that N(t)
and N(t′) are uncorrelated. Hence, the noise is characterized by

〈N(t)〉 = 0, (3.7)
〈N(t)N(t′)〉 = 2Bδ(t− t′), (3.8)

with 〈...〉 describing the averaging over time and B accounting for the width of the
distribution. Due to the numerous collisions of Brownian particle and fluid constituents
it is possible to apply the central limit theorem which means that Eqs. (3.7) and (3.8)
are sufficient to describe the distribution of the random force since higher moments can
be neglected. This type of noise is often denoted as "white" noise where the term "white"
is motivated by the fact that the spectral density of the force

S(ω) = 2
∫ ∞
−∞

eiωτ 〈N(t)N(t− τ)〉dτ = 2
∫ ∞
−∞

eiωτ2Bδ(τ)dτ = 4B

is constant just as it is the case for white light. The Wiener-Kinchin theorem [114] can
be used to derive this relation. To calculate the constant B describing the strength of
the noise we can start with the equipartition theorem [115]. It states for the mean energy
〈E〉 of the Brownian particle that

〈E〉 = kBT

2 = M〈ẋ(t)2〉
2 (3.9)

is given in thermal equilibrium at temperature T which means that

〈ẋ(t)2〉 = kBT

M
(3.10)
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has to be fulfilled. Furthermore it is possible to deduce 〈ẋ(t)2〉 from the LE Eq. (3.6)
where we get

〈ẋ(t)2〉 = e−2γt/Mẋ(0)2 + B

γM
(1− e−2γt/M), (3.11)

as can be seen in [31]. By neglecting the exponential terms for large times t → ∞ and
by equating Eq. (3.10) and Eq. (3.11),

B = γkBT (3.12)

can be concluded. This means that random force and friction are connected via

〈N(t)N(t′)〉 = 2γkBTδ(t− t′) (3.13)

which is known as fluctuation-dissipation theorem (FDT). It is a very fundamental re-
lation which appears in different shapes for many thermodynamical frameworks as long
as equilibrium is given. For the studies of this thesis based on the LE it will be used for
simulation setups and interpretation purposes.
To conclude this section it is worth noting that the Langevin equation (3.6) needs to
be treated with some caution. Due to the stochastic nature of the noise, p(t) is strictly
speaking not differentiable, i.e., it makes only sense to interpret ṗ = dp/dt in terms
of finite dp and dt. Sill, Eq. (3.6) is well behaving in the sense that it can be seen as
extension of ordinary differential calculus [116].

3.2.2 Microscopic derivation
After the phenomenological motivation of the Langevin framework described in the pre-
vious section, we will now derive the LE for the unspecified system coordinate x(t) by
using a framework which is more abstract than the Brownian particle. This framework
is known as Caldeira-Leggett model [117]. We will stick to a one-dimensional x(t) for
simplicity, the generalization to more dimensions will be explained at the end of this
section.
First of all, we assume that the system coordinate x couples bilinearly to some bath con-
sisting of harmonic oscillators, see the book of Zwanzig [31]. Additionally, the potential
F (x), which does not interact with the bath, applies the Newtonian force dF/dx to the
system. This potential can be identified as the potential of mean force which is equiva-
lent to the free energy landscape (FEL), see Sec. 2.3, from perspective of the Langevin
equation [14, 118–120]. It can be derived from the total potential by integrating out
all degrees of freedom assigned to the bath. Based on these two specifications the total
microscopic Hamiltonian of system and bath takes the form

Htot = Hsys +Hbath = p(t)2

2 + F (x) +
N∑
i=1

pi(t)2

2 + ω2
i

2

(
qi(t)−

ci
ω2
i

x(t)
)2
 (3.14)

with

Hsys(x, p) = p(t)2

2 + F (x), (3.15)

Hbath(x, qi, pi) =
N∑
i=1

pi(t)2

2 + ω2
i

2

(
qi(t)−

ci
ω2
i

x(t)
)2
 . (3.16)
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The momentum p without index refers to the system while qi and pi describe the positions
and momenta of the degrees of freedom of the bath. The transformation

p(t) = p̄(t)√
M

x(t) = x̄(t)
√
M pj(t) = p̄j(t)√

mj
qj(t) = q̄j(t)

√
mj

was used to make Eq. (3.14) less crowded. Based on Htot, the equations of motion can
be deduced

ẋ(t) = p(t), (3.17)

ṗ(t) = −dF (x)
dx

+
N∑
i=1

ci

(
qi(t)−

ci
ω2
i

x(t)
)
, (3.18)

q̇j(t) = pj(t), (3.19)

ṗj(t) = −ω2
j qj(t) + cjx(t). (3.20)

The equations of the bath oscillators qj can be solved in terms of their initial values
qj(0) and the influence of x(t). The calculation is skipped at this point since it can be
found in [31], for example. By inserting the result in the equation of motion of p, the
generalized Langevin equation (GLE) can be derived

ṗ(t) = −dF (x)
dx

−
∫ t

0
p(t− s)K(s)ds+N(t) (3.21)

after defining the so-called memory kernel K(t)

K(t) =
N∑
i=1

(
c2
i

ω2
i

)
cos(ωit) (3.22)

and the noise

N(t) =
N∑
i=1

ci

(
pi(0)sin(ωit)

ωi
+
(
qi(0)− ci

ω2
i

x(0)
)

cos(ωit)
)
. (3.23)

Compared to the Langevin equation of the Brownian particle, Eq. (3.6), we see that the
right side of Eq. (3.21) does not only depend on p(t) but also on prior momenta weighted
by K(t). This is the reason to associate this quantity with the memory of the system.
It can be shown that a generalized FDT

〈N(t1)N(t2)〉 = kBTK(|t1 − t2|) (3.24)

connects noise and memory kernel. To this end it is assumed that the starting val-
ues qi(0), pi(0) of the bath coordinates follow the Boltzmann distribution f(qi, pi) ∝
e−Hbath/kBT [31]. This shows that the FDT holds only in thermal equilibrium, just as
it was already noted above. Now, we claim that the system-bath couplings ci are dis-
tributed continuously, i.e., we interpret the bath as an ensemble of numerous oscillators
with different frequencies. This allows to define the memory kernel continuously

K(t) =
∫ ∞

0
g(ω)c(ω)2

ω2 cos(ωt)dω =
∫ ∞

0

f(ω)
ω2 cos(ωt)dω (3.25)
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where f(ω) represents the spectral density. After inserting this into Eq. (3.21), we get

ṗ(t) = −dF (x)
dx

−
∫ t

0
p(t− s)

∫ ∞
0

f(ω)
ω2 cos(ωt)dωds+N(t) (3.26)

Considering that the Langevin equation represents a stochastic model of the dynamics of
x it makes sense to assume that the memory kernel K(t) decays to zero for large t since
the correlation between p(t) and p(t − τ) decays for growing τ due to the permanent
disturbance induced by the noise. This motivates the investigation of the case where
p(t) does not change on the time scale of the decay of K(t). Inserting p(s) ≈ p(t) into
the integral in Eq. (3.21) shows that K(t) can be approximated by the δ-function

K(t) ≈ 2γδ(t) (3.27)

with γ =
∫ t

0
∫∞

0
f(ω)
ω2 cos(ωt)dωds without changing the result of Eq. (3.21). This yields

the Markovian Langevin equation (LE)

ṗ(t) = −dF (x)
dx

− γp(t) +
√

2kBTγξ(t) (3.28)

after using the FDT

〈N(t1)N(t2)〉 = kBTK(|t1 − t2|) = 2γkBTδ(t1 − t2) (3.29)

The stochastic variable ξ(t) follows a standard normal distribution with 〈ξ(t1)ξ(t2)〉 =
δ(t1−t2) and 〈ξ(t)〉 = 0. Eq. (3.28) looks very similar to the LE of the Brownian particle
Eq. (3.6), only the deterministic force dF/dt was added. The term "Markovian" in the
denomination of Eq. (3.28) illustrates that ṗ(t) only depends on p(t) and not on p(t−τ),
just as the transitions of a Markov state model, Sec. 3.1, only depend on the actual
system configuration and not on previously visited states.
For completeness we can inspect the limit of large friction. Here, 〈ṗ〉 can be neglected
since the frictional force instantaneously damps p(t) back to zero which leads to the
overdamped Langevin equation

ṗ(t) = −1
γ

dF (x)
dx

+
√

2kBT

γ
ξ(t) (3.30)

after inserting ṗ = 0 in Eq. (3.28). While Eq. (3.30) has the advantage of being a first
order differential equation whereas the Markovian Langevin equation is of second order,
the restriction to large friction forces represents a severe limitation so that we stick to
the Markovian Langevin equation for modeling purposes in this thesis.
In summary, we have seen that it is possible to derive the Langevin framework from a
microscopic Hamiltonian. Although this foundation is, mathematically speaking, more
robust than the phenomenological derivation by Langevin, Sec. 3.2.1, it needs to be
noted that the system-bath interaction was very simple. Additionally, the bath con-
sisted of simple harmonic oscillators. In consequence the presented derivation does not
indicate that it is possible to rigorously derive the Langevin equation (might it be GLE
(3.21), Markovian LE (3.28) or overdamped LE (3.30)) for an arbitrarily complicated
Hamiltonian Htot.
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To close this section we inspect the generalization of the LE for multidimensional sys-
tems x. To be in line with the definitions used for the data-driven Langevin equation,
Sec. 4.1, we first rewrite Eq. (3.28) to

Mẍ(t) = −∇F (x)− Γ(x)ẋ(t) +K(x)ξ(t) (3.31)

by switching back to explicitly appearing masses and by using Γ(x) = γ(x)M and
K(x)KT (x) = 2kBTΓ(x). Please note that friction and noise might depend on x which
is conceptionally unproblematic considering the Markovian nature of the equation. Due
to x being a vector now, ∇F (x) and ξ represent vectors as well while Γ(x), K(x) and
M turn into matrices. Since K is only defined as KKT , a way must be found to extract
K from 2kBΓ(x). In this thesis we use the Choleskey decomposition at this point. We
note that the GLE (3.21) can be extended to more than one dimension as well. Here,
the memory kernel K(t) becomes a matrix and the left side of the FDT changes to
〈N(t1)N(t2)T 〉.

3.3 Numerical integration

Having discussed the derivation of the Markovian Langevin equation, the next step is to
use it to investigate system dynamics in applications. Due to the complicated interplay
of ∇F (x), Γ(x) and K(x)ξ, analytic calculations cannot access the Langevin dynamics
of nontrivial systems which means that numerical methods must be applied. In this
section it is assumed that the free energy F (x), the friction Γ(x) and the temperature T
are given and that the FDT is fulfilled. When we use these quantities to derive the tra-
jectory x(t), we will speak of model-based Langevin equation (mLE) simulations. The
inverted problem, i.e., a model is determined based on a given x(t), will be considered
in Sec. 4.1 where the data-driven Langevin equation (dLE) is introduced.
To generate the trajectory x(t) of an mLE simulation we can choose one of numerous nu-
merical integrators. The first method introduced in this thesis is the (relatively simple)
stochastic Euler integrator. It represents the cornerstone of the dLE approach exten-
sively used in this thesis. Afterwards, the more evolved OVRVO integrator is considered
and its performance is compared to the Euler integrator by inspecting exemplary mLE
simulations.

3.3.1 Euler integrator

The numerical approach presented at first is the so-called stochastic Euler or Euler-
Maruyama integrator [114]. While there are other more elaborate approaches to solve
the LE more precisely, like different versions of the Verlet integrator or the OVRVO
scheme [121], the Euler integrator has the advantage of providing relations which are
simple to interpret in terms of free energy, friction and temperature. This aspect is used
below to derive the dLE approach.
The Euler scheme produces snapshots of x(t) separated by some time step δt. The value
x(nδt) at time t = nδt is approximated by

x(t = nδt) = xn = xn−1 + ẋn−1δt (3.32)
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which represents the difference quotient of ẋ. This approximation becomes exact once
ẋ = const holds for the whole time δt which is, of course, not true for any system
influenced by forces and finite δt. Still, choosing δt small enough minimizes the error.
To propagate the LE (3.28), the velocity needs to be discretized as well

ẋn = ẋn−1 +M−1
(
−∇F (xn−1)δt− Γ(xn−1)ẋn−1δt+

√
2kBTδtΓ(xn−1)ξn−1

)
(3.33)

so that Eq. (3.32) can be used to get the position xn based on the parallel propagation
of the velocity via Eq. (3.33). The noise ξn−1 consists of random number distributed
according to a standard normal distribution 〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2). We note that
the free energy gradient as well as the friction are multiplied by the time step δt whereas
the noise is multiplied by

√
δt, see Risken [114]. This shows that the noise induces a

stochastic and not a deterministic motion of x(t). Considering that δt is assumed to be
very small, one might suspect that the terms ∝ δt can be neglected in Eq. (3.33) since√
δt > δt. Still, due to its stochastic nature, the noise switches its sign a lot of times

for short sequences of consecutive time steps which leads to significant cancellations so
that the deterministic forces ∝ δt can, in general, catch up to provide roughly the same
contribution to the dynamics [116].
Besides the Markovian LE we will inspect trajectories produced according the generalized
Langevin equation (3.21) as well. To simplify the notation and since we will only use the
GLE this way, the following equations assume an one-dimensional system. In addition,
we assume that the memory kernel decays monoexponentially and stays independent of
x, i.e, K(t) = (Γ/τK)e−t/τK holds. This allows for the straightforward generation of the
non-Markovian noise. The subsequent equations arise based on the Euler scheme. First,
the friction force is discretized

ffric,n =
∫ nδt

0
K(t− t′)ẋ(t′)dt′ = Γ/τKe

−nδt/τK
n−1∑
k=0

ekδt/τK ẋkδt (3.34)

and propagated by

ffric,n = Γ/τKe
−δt/τK ẋnδt+ e−δt/τKffric,n−1. (3.35)

Second, the noise is produced using

Nn = e−δt/τKNn−1 +
√

2kBTΓ
τK

√
δtξn (3.36)

which is based on the formal integration of the equation of motion of N(t) [122]

Ṅ(t) = − 1
τK
N(t) +

√
2kBTΓ
τK

ξ(t)

which follows from the fluctuation-dissipation theorem after inserting the monoexpo-
nential K(t). As always, 〈ξ〉 = 0 and 〈ξ(ti)ξ(tj)〉 = δ(ti − tj) hold. The velocity is
propagated via

ẋn+1 = ẋn + δt

M

(
−dF
dx
− ffric,n +Nn

)
, (3.37)

and the position according to Eq. (3.32).
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3.3.2 OVRVO integrator: Performance compared to Euler
Given that the Euler integrator represents a very simple numerical integrator, it is a
good idea at this point to compare its performance to another, more elaborate approach.
While the Euler integrator is expected to perform well for sufficiently small time steps
δt, it is plausible that more complicated approaches allow for the use of larger δt. This
is advantageous if long times need to be simulated since the computational costs will go
down for larger δt. At least if the more elaborate approach does not perform significantly
more calculations per time step than the Euler integrator.
The alternative approach considered now was developed by Bussi and Parrinello [121] and
corresponds to the OVRVO splitting of the propagator eLδt with the Liouville operator
L [123, 124]. Here, the letter O, referring to the Ornstein-Uhlenbeck process [114],
represents a stochastic propagation while V and R symbolize deterministic updates of
velocity and position, respectively. For the sake of clarity, since this integrator includes
exponential functions which are complicated to extend to more than one dimension,
we will only consider a one-dimensional system x. In the one-dimensional case, the
equations of the OVRVO integrator for the propagation of the Markovian LE (3.31) are
[121]

ẋ(nδt+ 1
4δt) = ẋn+ 1

4
= c1(xn)ẋn + c2(xn)

M
ξ, (3.38)

ẋn+ 1
2

= ẋn+ 1
4

+ δt

2M
dF (xn)
dx

, (3.39)

xn+1 = xn + ẋn+ 1
4
δt+ δt2

2M
dF (xn)
dx

, (3.40)

ẋn+ 3
4

= ẋn+ 1
2

+ δt

2M
dF (xn+1)

dx
, (3.41)

ẋn+1 = c1(xn)ẋn+ 3
4

+ c2(xn)
M

ξ′, (3.42)

with c1(x) = e−Γ(x)δt/2, c2(x) =
√

(1− c1(x)2)MkBT and ξ, ξ′ being two independent
normal distributed random numbers. The sequence of the propagations illustrates the
name of the integrator, OVRVO. Please note that the steps (3.39) and (3.41) can be
combined in our case since their splitting would have been only important if the Hamil-
tonian had been updated (due to an explicit time dependence) after step (3.40) (which
would have led to another update of x directly after the Hamiltonian). It is also worth
noting that the steps (3.38), (3.39) and (3.41) only provide virtual points needed to reach
t+ δt, they are not meant to describe real dynamics at fractions of δt.
Now we can compare the performance of Euler and OVRVO integrator. The system
which will be considered is specified in Fig. 3.1. The free energy has two minima sep-
arated by a single barrier. Two different choices of Γ(x) are considered, once Γ = 150
stays fixed and once Γ(x) increases on the barrier. This increase of Γ(x) on the bar-
rier is motivated by the findings of Wolf et al. [125]. Here, Langevin models derived
by dissipation-corrected targeted MD [42, 126] for sodium chloride, trypsin-benzamidine
and the heat shock protein 90 showed exactly this behavior, see Sec. 6.2. Besides friction
and free energy, M = 1 ps and T = 300 K was set. Please note that we use the unit
convention of the dLE at this point, see Sec. A.3, where friction factors are unitless,
masses are given in ps and kBT = 38 ps−1 holds at T = 300 K.
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Based on these parameters, the two integrators, Euler and OVRVO, were used to gen-
erate a set of trajectories of 2 µs length each. The time step δt was varied to assess
the convergence behaviour of the integrator. Besides the resulting free energy, repre-
senting the statistics of the Langevin trajectories, the average waiting times, see last
paragraph of section 2.5, of the transitions between the left and the right minimum can
be calculated to inspect the model dynamics. The left minimum, called state L in the
following, was defined by x < −1.7 while the right minimum, called state R, was defined
by x > 1.4. The dashed lines in Fig. 3.1 show these borders.
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Figure 3.1: System used to compare Euler and OVRVO integrator. A free energy
with two minima (blue) together with constant friction Γ (black) or varying
friction Γ(x) (red) is used as test system to compare the performance of the
two integrators. The two dashed black lines indicate the borders of the two
states L and R, see text.

Considering the free energies of the various Langevin simulations in Fig. 3.2, it can be
seen in Fig. 3.2a that the Euler integrator provides accurate results up to δt = 0.01 ps
when using the constant Γ = 150. For larger time steps the barrier gets underestimated
and right after δt = 0.013 ps the simulation produces nonsensical trajectories. For the
varying Γ(x) the Euler integrator even needs time steps of maximum δt ≈ 0.001 ps
to provide correct FELs (Fig. 3.2c), larger time steps result in landscapes featuring an
artificial minimum on top of the barrier. The OVRVO integrator, on the other hand,
produces accurate free energies up to δt = 0.02 ps (Fig. 3.2b). When accepting a slight
underestimation of the main barrier even δt = 0.05 ps works satisfying, larger time
steps (like δt = 0.1 ps) show significantly underestimated barriers. Interestingly, the
OVRVO integrator does not show any significant difference between simulations using
the constant Γ = 150 and simulations employing the varying Γ(x). This observations
indicate that the OVRVO integrator allows for the use of significantly longer time steps
δt. However, the average waiting times relativize this conclusion. As shown in Fig. 3.3a,
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the Euler integrator provides good estimates for Γ = 150 up to δt = 0.01 ps, a time step
where the OVRVO integrator already starts to fail. When considering the varying Γ(x)
(top right), in contrast, the Euler integrator fail earlier than the OVRVO integrator but
the difference is less than an order of magnitude. As for the free energies we see that
the latter integrator behaves the same for both choices of Γ.
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Figure 3.2: Free energies with Euler and OVRVO integrator. (a,b) Free energies
of Langevin simulations with Γ = 150 are shown. (c,d) Here, the varying
Γ(x) is used. (a,c) show results for the Euler integrator while (b,d) consider
the OVRVO integrator. Black dots indicate the input free energy while the
other colors show Langevin simulations which use the integration time steps
given by the legend in the different figures.

Hence, it cannot be stated that the OVRVO integrator is significantly more reliable than
the Euler integrator. While this finding appears counterintuitive considering that the
OVRVO integrator is significantly more involved than the Euler approach, it is worth
noting that it is possible to improve the former by rescaling the time step [123]. The
factor

b =
√

2M
Γδt tanh

( Γδt
2M

)
can be determined by requiring that the OVRVO integrator preserves the right mean-
square displacement of the free diffusive motion through a homogeneous medium [123].
The rescaling can be implemented by substituting δt with bδt at every explicit occur-
rence of the time step in the five equations of the OVRVO integrator above, i.e., c1 and
c2 stay untouched. For our example this rescaling drastically improves the results for
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the OVRVO integrator when using Γ = 150. Time steps up to 0.2 ps can be used which
clearly outclasses the Euler integrator, see Fig. 3.3c. This result is not unexpected con-
sidering that Γ = const directly corresponds to a homogeneous medium for which the
factor b was derived. Still, in case of a varying Γ(x) this improvement nearly vanishes,
i.e., the maximally usable time step of the Euler integrator is not much smaller than the
one of the OVRVO integrator.
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Figure 3.3: Average waiting times with Euler and OVRVO integrator. (a,b) Re-
sults for simulations based on the Euler and unmodified OVRVO integrator
are shown (a) for Γ = 150 and (b) for varying Γ(x). The results for the
Euler integrator are shown in red while the OVRVO integrator is pictured in
blue. Black lines represent the expected reference values. (c,d) Here, average
waiting times of simulations with δt-rescaling in the OVRVO integrator are
presented, see text. Error bars were defined as difference between the average
waiting time estimates of first and second half of the respective trajectory.

In summation we have seen that the Euler integrator has its limits when compared to
a more sophisticated approach. Nevertheless, just because an integrator works excep-
tionally well for one setup (here OVRVO with Γ = 150 and a rescaling of δt) this does
not mean that it works just as well for any other setup (here when using the varying
Γ(x)) so that the practical range of reliable δt for a priori unknown Langevin forces, as
for applications of the data-driven Langevin equation, will most likely stay comparable
to the range of the Euler integrator.
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3.4 Acceleration of Langevin dynamics via T-boosting

Compared to MD simulations, Langevin dynamics can be integrated much faster and
cheaper because the system description x contains much less coordinates than the MD
dynamics and the forces are simpler to calculate. This follows from assigning irrelevant
degrees of freedom to the bath during dimensionality reduction, i.e, their explicit time
evolution is ignored. The resulting simulation speedup motivates the application of
Langevin dynamics in the prediction of long-time dynamics via analysis of limited MD
data, see for example the applications of the data-driven Langevin equation in this thesis.
Still, in case those long-time dynamics are of the order of millisecond or even seconds,
see for example the studies in Sec. 6.2, the Langevin equation needs to be integrated up
to 1017 times to get converged observables since, as we have seen in the last section, the
time step of the numerical integration scheme has to be on the order of fs or maximally
ps to provide accurate results. This is not feasible for standard computing resources
which means that a way must be found to circumvent this limitation.
When inspecting Eq.
(3.28) we see that the temperature T influences the Langevin dynamics via the stochastic
force, i.e., a larger T results in larger oscillations. When considering the rate k of some
Langevin process at two temperatures T1 and T2, it changes according to the Kramers
relation [28]

k(T2) = k(T1)e−∆F ( 1
kBT2

− 1
kBT1

) (3.43)

with ∆F representing the energy barrier which needs to be crossed during the process.
Hence, if T2 > T1 holds we will observe for T2 more event in some finite simulation time
tsim than for T1, i.e., the statistics converge faster. Consequently, Eq. (3.43) can be
exploited to accelerate Langevin simulations in the following way. First, free energy F
and friction Γ (and massM for completeness) are determined at the target temperature
T . Second, various different temperatures Ti > T are used to rapidly collect statistics
of the considered dynamical process via Langevin simulations. Finally, k(T ) is deduced
from the different k(Ti) via a fit to Eq. (3.43). This procedure, called "T-boosting" by
Wolf et al. [125], was successfully applied to correctly predict rates down to k ≈ 10−3

s−1 within factor of 5 to 20, see Sec. 6.2 in chapter 6, which is remarkably accurate
considering the length of this time scale.
As note of caution it should be pointed out that we cannot expect to predict the real sys-
tem dynamics at the larger temperatures Ti due to the general temperature dependence
of the Langevin fields in biomolecular applications. The produced "pseudo-dynamics"
leading to k(Ti) only allow for the determination of k(T ) based on Eq. (3.43) and not
for any interpretation of the system dynamics at Ti 6= T . This becomes obvious when
assuming that some biomolecular system is modeled at T ≈ 300 K. While Eq. (3.43)
can predict accelerated dynamics at, e.g., T = 1000 K based on the Langevin fields at
T = 300 K, the real system would be destroyed at this temperature. This important
point distinguishes T-boosting from, e.g, temperature accelerated MD [127] where the
free energy F (x) is determined at a high temperature and then rescaled to the target
temperature T . This might by problematic considering that F (x) probably depends on
T . Our approach of T-boosting, in contrast, estimates the fields at T and only uses the
larger Ti to predict the dynamics via Eq. (3.43).
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3.5 Summary
This chapter introduced in Sec. 3.1 the concept of Markov state models which describe
system dynamics in terms of memory-less jumps between discrete states. Afterwards,
Sec. 3.2 introduced the Langevin equation which covers the system dynamics in terms of
continuous motions driven by free energy, friction and stochastic noise. We considered
the generalized Langevin equation and discussed the simplification to the Markovian
Langevin equation. Sec. 3.3 considered numerical integrators which can be used to sim-
ulate Langevin trajectories. We compared the performance of the relatively simple Euler
integrator to the more evolved OVRVO integrator and observed that the former, despite
its simplicity, does not perform significantly worse than the latter. This finding indicates
that it is reasonable to assume that the data-driven Langevin equation, introduced in
the next chapter and based on the Euler integrator, will not be hindered by a impractical
integrator. In the last section of this thesis we introduced the concept of T-boosting.
Given a Langevin model at some temperature T , this approach integrates the Langevin
equation at higher temperatures Ti to accelerate the process of interest and extrapolates
the dynamics at T via a Kramers relation. As we will see in chapter 6, T-boosting allows
us to access timescales of the order of seconds.
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"Die Erfahrung ist fast immer eine Parodie auf die Idee.
[The experience is almost always a parody of the idea.]"

–Johann Wolfgang von Goethe, "Tagebücher. 3. Schweizer Reise", (1797)

We saw that it is possible to solve the Markovian Langevin equation numerically if free
energy, friction and temperature are given. Still, those forces are in general not obvious
if we want to model an unknown system. This means that some way to extract them
from given data needs to be found and many attempts to do so have been formulated [38,
39, 128–131]. In this thesis we will mainly use the data-driven Langevin equation (dLE)
approach introduced by Hegger and Stock [132] and further developed by Schaudinnus
et al. [43–45]. The fundamental formulas and derivations are shown at the beginning of
this chapter. Directly afterwards we will apply the dLE to exemplary data to inspect the
influence of its crucial parameter: the time step δt. Based on our observations we will
introduce the rescaled dLE which allows for the optimization of the dLE performance
at small δt. To enable the study of extensive data sets by the dLE, we will afterward
consider the question of the reliable reduction of large input data sets. It will be shown
that the removal of redundant data points may spoil the model dynamics, instead, one
can use an appropriate pre-averaging of the data. Having considered the established dLE
formulation based on the Euler integrator, we will subsequently inspect the performance
of a varied dLE formulation based on a Verlet integrator. As alternative approach of
parameterizing the Markovian Langevin equation, we will afterwards consider the basic
formulas of the dissipation-corrected targeted MD (dcTMD) framework established by
Wolf and Stock [42]. This approach provides one-dimensional Langevin models based on
constraint MD simulations. Subsequently, the chapter closes by presenting the results
of the Markov state modeling of exemplary Markovian input data.

4.1 Data-driven Langevin equation (dLE)
The specific approach used in this thesis, called data-driven Langevin equation (dLE),
generates Langevin trajectories y(t) based on given data points x(t) by iterating two
steps. Assuming that the Langevin dynamics reached position yn at time t = n · δt, the
first step is to search for the k next neighboring data points xi. These neighbors can be
used in the second step to estimate the Langevin fields "on-the-fly" in a local manner, i.e.,
the forces might depend on yn and are constructed in parallel to the Langevin trajectory
yn.

4.1.1 Fundamental equations
To introduce the dLE in detail following previous work [43–45, 132] we first recapitulate
that the Markovian LE is determined by the drift field f , which is the gradient of
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the free energy, the friction field Γ and the noise amplitude K. Γ and K are related
via the fluctuation-dissipation theorem (3.29) in equilibrium. Assuming that the three
fields are not known for the system under study, we need to extract the forces from
some given stochastic trajectory x(t) recorded at a time resolution of δt. The resulting
field estimates can be used to propagate a new Langevin trajectory y(t) which can be
compared to x(t) to validate the Langevin model. Additionally, y(t) can be used to
predict long-time dynamics which cannot be calculated from the data.
At this point it is obviously assumed that the dynamics of x(t) are Markovian, i.e.,
it needs to make sense to approximate the equations of motion by the Markovian LE
(3.28). By approximating

ẍm = dẋm
dt
≈ ẋm+1 − ẋm

δt
(4.1)

with the finite time step δt this indicates that the velocity of the data ẋm = dxm/dt
obeying

ẋm+1 =M−1f(xm)δt− (M−1δtΓ(xm)− 1)ẋm +M−1K(xm)ξmδt1/2 (4.2)

can be reproduced by the velocities of the Langevin trajectory ẏ = dy/dt

ẏn+1 =M−1f(yn)δt− (M−1δtΓ(yn)− 1)ẏn +M−1K(yn)ξnδt1/2 (4.3)

with, e.g., f(yn) = f(xm) if yn = xm holds. Both equation, (4.2) and (4.3), coincide
with the Euler integrator introduced in Sec. 3.3.1. The two different indices m and n
should emphasize that x(t) and y(t) are not identical, i.e., y(t) does not simply follow
x(t). Note that f represents a vector in case of more than one dimension, whereas Γ, K
andM become matrices. Inserting the Euler discretization (4.1) again to reach y via

ẋm ≈
xm − xm−1

δt
= ∆xm

δt
(4.4)

allows us to write

xm+1 = xm + f̂(xm)− Γ̂(xm)∆xm + K̂(xm)ξm (4.5)

and
yn+1 = yn + f̂(yn)− Γ̂(yn)∆yn + K̂(yn)ξn (4.6)

where we defined the so-called dLE fields

f̂(yn) =M−1δt2f(yn), (4.7)
Γ̂(yn) =M−1δtΓ(yn)− 1, (4.8)
K̂(yn) =M−1δt3/2K(yn). (4.9)

As announced above we aim for a local estimate of the different fields. Due to the
stochastic nature of the dynamics, some sort of averaging needs to be performed to
eliminate the influence of the individual noise realizations. To this end we use the k next
neighbors xi of the dLE point yn and estimate

B(yn) = 〈B(xi)〉 = 1
k

k∑
i=1

B(xi), (4.10)
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which is valid as long as the neighbors xi are sufficiently close to yn. The number k can
be seen as the counterpart of the radius ε of some hypersphere centered at yn∑

i=1
Θ(|xi − yn| − ε) = k (4.11)

with Θ representing the Heavyside function. Fig. 4.1 illustrates this comparison.

dLE point

neighbours

not neighbours

predecessors of

followers of

Figure 4.1: Illustration of the neighborhood estimation. The dLE point yn (black)
is surrounded by its k next neighbors xi (blue). Each data point xi has a
predecessor (green) and a follower (cyan) which are used to estimate the dLE
fields. Data points which are further away (red) are not considered.

The hypersphere representing the neighborhood of yn grows and shrinks depending on
the local density of input data points. Since local fields are desired, ε(k) needs to be
sufficiently small. This means that a satisfying field locality, indicating a small k, needs
to be balanced against a sufficiently reliable averaging which indicates a large k. When
dealing in practice with data sets with more than 106 points, k ≈ 102 is typically chosen.
Based on a reasonable choice for k, the three dLE fields can be determined. Detailed
calculations can be found in Sec. A.1. The dLE friction can be deduced from the time-
lagged covariance matrix

Cov(∆xm+1,∆xm) = Cov(f̂(xm)− Γ̂(xm)∆xm + K̂(xm)ξm,∆xm)
= −Γ̂(yn)Cov(∆xm,∆xm)

using the deterministic nature of the drift field f̂ and Cov(ξm,∆xm) = 0 which results
from the white noise properties of ξ. Eq. (4.10) is used to carry out the averages which
are needed to calculate the covariances. Isolating Γ̂(yn), we get

Γ̂(yn) = −Cov(∆xm+1,∆xm)Cov−1(∆xm,∆xm). (4.12)

The drift field f̂ can be determined using the friction estimate via

f̂(yn) = 〈∆xm+1〉+ Γ̂(yn)〈∆xm〉. (4.13)
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The noise amplitude is a bit more complicated to determine. We have to insert the drift
estimate Eq. (4.13) into Eq. (4.5)

∆xm+1 = 〈∆xm+1〉+ Γ̂(xm)(〈∆xm〉 −∆xm) + K̂(xm)ξm

so that the covariance Cov(∆xm+1,∆xm+1) can be rearranged to

K̂(yn)K̂T (yn) = Cov(∆xm+1,∆xm+1)− Γ̂(yn)Cov(∆xm,∆xm)Γ̂T (yn) (4.14)

using again the white noise properties of ξ and the fact that 〈∆xm+1〉 as well as 〈∆xm〉
are local constants. To simplify Eq. (4.14) it is possible to use Eq. (4.12) together with
Cov−1(∆xm,∆xm) = (Cov−1(∆xm,∆xm))T so that

K̂(yn)K̂T (yn) = Cov(∆xm+1,∆xm+1) + Γ̂(yn)Cov(∆xm,∆xm+1). (4.15)

Using the fact that any covariance is positive-definite and Hermitian, the Choleskey
decomposition can be employed to determine K(yn) which results in a noise amplitude
of lower triangular shape for any multidimensional system.
Based on estimation equations above it is possible to determine the noise which would
have been needed to generate the data trajectory x(t) in the LE framework. This means
that severe contradictions to the Markovianity assumption can be detected by the dLE
itself. To do so, the dLE only needs to estimate the fields at all data points xm. Since
xm+1 is already defined, the noise trajectory ξm can be deduced via

ξm = K̂(xm)−1
(
∆xm+1 − f̂(xm) + Γ̂(xm)∆xm

)
(4.16)

which means that it is possible to check whether or not ξm fulfills the Markovian re-
quirements, i.e., it needs to be delta-correlated with mean zero. Besides the input noise
it is additionally possible to use the dLE fields to derive the system mass M which is,
of course, always dependent on the system description. To this end we remember that
Γ and K are connected via the fluctuation-dissipation theorem (3.29). By inserting the
equations (4.8) and (4.9) into Eq. (3.29), it can be seen that

K̂(yn)K̂(yn)TMT = 2kBTδt
2(Γ̂(yn) + 1). (4.17)

holds.

4.1.2 Influence of the dLE time step
Since the estimators of the three Langevin fields, (4.12), (4.13) and (4.15), depend on
the displacements ∆xi, the time step δt chosen to evaluate ∆xi plays a major role in
model consistency. Just as the lag time τ used to construct an MSM needs to be large
enough to ensure the Markovianity of the state dynamics, δt needs to be sufficiently
large to validate the memory-less nature of the Markovian Langevin framework. On the
other hand δt must be chosen small enough to ensure that the estimated fields are truly
local, especially the free energy landscape needs to be resolved sufficiently fine. This
condition can also be interpreted as the requirement that the numerical integrator of the
dLE needs to converge. Thus, in general we cannot expect to choose δt completely free,
there will be some valid value range δt ∈ [δtM, δtR] where the subscripts M, R remind of
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Markovianity and resolution as bounding conditions of δt.
This consideration raises the question of how to detect the two borders δtM and δtR.
The latter time step is relatively straightforward to detect in practice. Since the model
dynamics and especially the free energy should be independent of δt, it is simply possible
to compare the predicted free energies of dLEs at different δti. The upper bound δtR
reveals itself as the last time step where all free energy extrema are sharply resolved.
Once δt > δtR, the predicted free energy starts to look blurry, i.e., minima are not as
deep as for smaller δt and the barriers are broadened. The lower bound δtM, on the other
hand, is more complicated. Although Eq. (4.16) allows to calculate the noise observed
in the data, it needs to be kept in mind that this calculation already assumes that the
Langevin framework can be applied to the data. Hence, we can only use Eq. (4.16) to
perform some self-consistency test, there is no guarantee that all possible contradictions
between input data and Langevin model can be tracked. Consequently the estimation
of δtM via Eq. (4.16) should be treated with caution, it is possible that δt needs to be
chosen significantly larger due to hidden memory effects which stay undetected by the
noise check due to some cancellation of errors.
In the following we are going to inspect the influence of the choice of δt on the dLE
performance. First of all, the ideal case is considered: perfectly Markovian data pro-
duced according to Eq. (4.5). To be more specific, the dynamics of the dimensionless
coordinate x(t), see Fig. 4.2, explores a standard double well superimposed by a sine
function which aims to mimic a rugged energy landscape as it is observed in biomolecular
dynamics. The main barrier at x = 0 is significantly larger than the secondary barri-
ers caused by the sine overlay. As additional parameters we use a constant friction of
Γ = 3000, the temperature T = 300 K andM = 400 ps. The reference trajectory of 107

points is produced by numerically integrating the Markovian Langevin equation with a
time step of δt0 = 20 fs by using the Euler integrator, i.e., we record system dynamics
for 200 ns which provides converged statistics. This data constitutes the input for our
following study of the influence of δt on the performance of the dLE. To circumvent any
influence of varying sampling quality, we do not simply take any mth point of the data
to perform dLE simulations at mδt0. Instead, the reference trajectory is separated into
m sub-trajectories (starting at t = 0, δt0, ..., (m − 1)δt0 with time step δt = mδt0) and
the whole ensemble of trajectories is used as input for the dLE.
First, we want to detect the upper bound δtR. To this end the free energies of dLE simu-
lations at different δt are compared in Fig. 4.2a. It turns out that the sine overlay is only
resolved for small time steps δt ≤ 0.2 ps but the main barrier is reliably reproduced up to
δt ≤ 20 ps. Once δt exceeds this limit, the overall shape of F (x) is lost, i.e., δt becomes
so large that the respective displacements ∆xn(δt) do not allow for a correct numerical
integration of the Langevin equation. Considering the other two fields Γ and K, see Fig.
4.2b, we observe qualitatively correct estimates only for δt ≤ 4 ps, both fields start to
grow for larger time steps. We note that the field estimates develop some dependence
on x for δt ≥ 1 ps, see Fig. 4.4b, but this is unimportant for the dLE predictions of free
energy and dynamical quantities like transition times (see below). This demonstrates
that not all features of the dLE field estimates are relevant for the performance of the
Langevin model. After all, the consideration of the different Langevin fields indicates
that δtR = 4 ps can be assumed as upper bound on the suitable time steps if we accept
that the secondary barriers, i.e., the sine overlay, are not resolved. If we want to resolve
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those barriers we will have to set δt ≤ 0.2 ps instead.
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Figure 4.2: Markovian double well model. (a) Shown are the free energies explored
by the input data (MD) and dLEs at different time steps. The dashed lines
show the cores of the two states R and L (see text) which are used to quantify
the system dynamics. (b) Here, the dLE estimates of friction Γ and noise
amplitude K for different time steps are presented. The black line shows the
fields used in the input data. (c) The autocorrelation of the reconstructed
noise at different δt. (d) We see the transition times τL,R estimated by the
dLE at different δt (dots) compared to the expectations (lines). In red we
see L→R while blue represents R→L.

While we see that δtR can be complicated to choose, the lower bound δtM, on the other
hand, is expected to be trivial for our specific example. Since there was no memory at
all, δtM = δt0 should hold. The noise autocorrelation shown in Fig. 4.2c reveals that this
is indeed true, each curve decays in just one time step which indicates that the back-
calculated noise is δ-correlated. Averages, standard deviations and noise distributions
(not shown) meet the expectations (normal distribution) as well. Hence, we expect
that δt ∈ [δt0, 4 ps] represents a suitable value range for dLE modeling. To verify this
assumption one can inspect the transition times τL and τR representing the average
waiting times of the transition from the left minimum (state L) to the right minimum
(state R) and backwards. To exclude spurious oscillations on top of the barrier, we
only count transitions between the cores of the two states defined by xL ≤ −1.7 and
xR ≥ 1.4, see the dashed lines in Fig. 4.2a. As can be seen in Fig. 4.2d, the dLE truly
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estimates the right times of τL = τL→R = 6.6 ns and τR = τR→L = 3 ns for δt ∈ [δt0, 4 ps]
which indicates, together with the correctly reproduced main barrier of the free energy,
perfectly valid dLE models.
Up to now we have seen that the dLE reproduces free energy, friction and noise amplitude
as long as δt is sufficiently small. But by also considering the estimated mass M, the
situation becomes more complicated. As shown in Sec. 4.1.1, the mass estimate M
of the dLE can be calculated based on Γ̂ and K̂ using Eq. (4.17). Alternatively, the
equipartition theorem

M = kBT

〈ẋ2〉
(4.18)

with ẋ = (xn − xn−1)/δt can be used. Fig. 4.3 shows that both mass estimates grow
for an increasing δt, the equipartition-based mass is slightly smaller than the estimate
based on Γ̂ and K̂. Interestingly, using δt = n · δt0 and considering M/n, it turns out
that the masses rise approximately proportional to δt in the value range 0.2 ≤ δt ≤ 20
ps. Hence, the dLE apparently does not estimate the mass used to generate the data
(M = 400 ps) once time steps δt ≥ δt0 are employed. To understand this behavior
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Figure 4.3: Mass estimated by dLE for the Markovian double well data. (a) We
see that the mass estimate grows with δt. Both ways of estimating the mass,
based on the dLE fields Γ̂ and K̂ or based on the equipartition theorem,
behave in the same way. (b) The growth is roughly proportional to the time
resolution δt.

one might consider the following line of thought. Based on the equations (4.5), (4.7),
(4.8) and (4.9) we imagine some one-dimensional trajectory x(t) with constant Γ and K
generated by integrating the Langevin equation with the basic time step δt0

δxk+1 = δxk −
1
M

dF (x)
dxk

δt20 −
Γ
M

δt0δxk + K
M

δt
3/2
0 ξk, (4.19)

where δxk = xk−xk−1 holds. Now we decrease the resolution from δt0 to δt = n ·δt0. As
consequence the dLE detects the displacements ∆xm = ∑n−1

j=0 δxm·n+j , i.e, we investigate

∆xm+1 =
n−1∑
j=0

δx(m+1)·n+j

=
n−1∑
j=0

δxm·n+j −
n−1∑
j=0

1
M

dF (xm·n+j)
dx

δt20 −
n−1∑
j=0

Γ
M

δt0δxm·n+j +
n−1∑
j=0

K
M

δt
3/2
0 ξm·n+j .
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The first term on the right side is obviously ∆xm. Assuming that dF
dx stays constant

during δt, which represents the locality assumption of the dLE, the second term becomes
1
M

dF (xm)
dx δt20

∑n−1
j=0 1. Since we assumed constant fields Γ and K, the third and fourth

term are simple to interpret as well. We get

∆xm+1 = ∆xm −
1
M

dF (xm)
dx

nδt20 −
Γ
M

δt0∆xm + K
M

δt
3/2
0

n−1∑
j=0

ξm·n+j . (4.20)

The sum over the white noise can be replaced by a single normal distributed random
number ξ̃m by considering that 〈∑n−1

j=0 ξm·n+j〉 = 0 and 〈∑n−1
j=0 ξm·n+j

∑n−1
j=0 ξm·n+j〉 = n

holds. This leads to

∆xm+1 = ∆xm −
1
M

dF (xm)
dx

nδt20 −
Γ
M

δt0∆xm + K
M

δt
3/2
0
√
nξ̃m. (4.21)

with 〈ξ̃〉 = 0 and 〈ξ̃ξ̃〉 = 1. Finally, we insert δt = n · δt0 and end up with the dynamics
seen by the dLE at this time step

∆xm+1 = ∆xm −
1
nM

dF (xm)
dx

δt2 − Γ
nM

δt∆xm + K
nM

δt3/2ξ̃m. (4.22)

It can be seen that M is substituted by nM. This explains the behavior of M(δt)
shown in Fig. 4.3 and indicates that the dLE does not necessarily estimates the mass
used to generate the input data. Having seen that the dLE behaves as expected for
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Figure 4.4: Average friction force and friction estimates. (a) We see that while
the average of the Markovian LE friction force Γẋ (green) is zero for all x,
the GLE friction force∑M

m=0K(mδt)ẋ(t−mδt) (red) shows a dependence on
x which closely resembles the drift force dF/dx (blue). The Markovian data
uses δt = 20 fs and the GLE data δt = 2 fs. (b) The dLE underestimates the
friction for memory-based input data (dots) compared to Markovian input
data (lines) as long as δt < τM ≈ 3τK holds. For larger δt, both input data
sets lead to the same friction estimate.

perfectly Markovian data, we will now inspect the influence of memory. To this end,
we consider input data following the GLE (3.21) with monoexponential memory, i.e.,
K(t) = (Γ/τK)e−t/τK , integrated as described in Sec. 3.3. Free energy F (x), friction Γ,
temperature T and massM are the same as for the Markovian data, the decay time of
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the memory kernel is set to τK = 0.2 ps. This time is chosen such that τK � τL,R which
means that the GLE trajectory predicts the same long-time dynamics as the Markovian
LE, considering that

∫∞
0 K(t′)dt′ = Γ holds. An integration time step of δt = 2 fs

was used. When comparing the average friction forces of this data set to the average
friction force of the Markovian input data, Fig. 4.4a, we see that memory induces a
clear position dependence. While the Markovian friction fulfills 〈Γẋ〉 = 0 for all x,
〈
∑M
m=0K(mδt)ẋ(t−mδt)〉 resembles the derivative of the free energy. Hence, there are

clear differences between both data sets.
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Figure 4.5: Generalized double well model. (a) Shown are the free energies explored
by the input data (MD) and dLEs at different time steps. The dashed lines
show the cores of the two states R and L (see text) which are used to quantify
the system dynamics. (b) Here, the dLE estimates of friction Γ and noise
amplitude K for different time steps are presented. The black line shows the
fields used in the input data. (c) The autocorrelation of the reconstructed
noise at different δt. (d) We see the transition times τL,R estimated by the
dLE at different δt (dots) compared to the expectations (lines). In red we
see L→R while blue represents R→L.

Now, we can inspect how memory influences the dLE. Fig. 4.5a shows that the main
barrier of the free energy is, just as for the Markovian data, reproduced for δt ≤ 20 ps
while the sine overlay needs again δt ≤ 0.2 ps. This is not surprising considering that
the free energies of both GLE and LE are the same. When inspecting the estimates of
Γ and K, see Fig. 4.5b, another similarity to the Markovian data can be seen: for δt > 4
ps the dLE overestimates both fields. Hence, the upper bound δtR of suitable time steps
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stays unaffected by the non-Markovianity of the data at shorter times, just as expected.
In contrast, the lower bound δtM changes significantly. We see that Γ and K are under-
estimated for δt ≤ 0.6 ps. The autocorrelation of the noise, see Fig. 4.5c, indicates as
well that small time steps are not well suited since the curves need more than one time
step to decay when δt ≤ 0.4 ps is used. An underestimation of Γ and K is accompanied
by an underestimation of the transition times τL and τR, see Fig. 4.5d. In total, we can
conclude that the dLE works correctly for time steps δt ∈ [0.6 ps, 4 ps]. In this value
region the dLE field estimates and dynamical predictions cannot be distinguished from
the dLE based on Markovian data, even the small (but practically irrelevant) depen-
dence of Γ and K on x for large δt can be found, see Fig. 4.4.
The lower bound δtM = 0.6 ps is highly consistent considering that the memory kernel de-
cays approximately within 3τK = τM . To understand why the friction is underestimated
for δt ≤ δtM we can analyze the friction force fF (t) of a GLE with arbitrary memory
kernel K(t) decaying within the time δtM. Assuming that the GLE was integrated with
a time step of δt0 the discretized friction force is

fF (t) = −δt0
M∑
m=0

K(mδt0)ẋ(t−mδt0) (4.23)

with M = t/δt0 for t ≤ δtM or M = δtM/δt0 for t > δtM. Now, we insert the average
velocity 〈ẋ(t)〉 = 1/M∑M

m=0 ẋ(mδt0) during memory decay to get

fF (t) = −Γ〈ẋ(t)〉 − δt0
M∑
m=0

K(mδt0)[ẋ(t−mδt0)− 〈ẋ(t)〉] (4.24)

with
∫∞

0 K(t′)dt′ = Γ. If the dLE is applied with a time step δt ≥ δtM, it will only detect
the average velocity 〈ẋ(t)〉 simply because it only detects the accumulated displacement
∆x(t) = ∑M

m=0 ∆x(mδt0) rather than the individual small displacements ∆x(mδt0). The
second term in Eq. (4.24) is not resolved. Hence, the friction force becomes Markovian
for δt ≥ δtM and the dLE estimates the right friction Γ.
Now we can check the results if δt = δt0 is used for the dLE. After rewriting the friction
force to

fF (t) = −δt0K(0)ẋ(t)− δt0
M∑
m=1

K(mδt0)ẋ(t−mδt0) (4.25)

we can see that it contains the Markovian term δt0K(0)ẋ(t) and an additional non-
Markovian correction resulting from the long-running decay of K(t). Since the dLE
estimates the fields only based on the displacements ∆x accumulated within the time
δt and not based on the full history, it must be expected that it mainly detects the
first term and overlooks the non-Markovian correction. If we assume K(t) to be positive
definite and if we furthermore assume that the sign of ẋ does not change during δtM, i.e.,
|fF | > |δt0K(0)ẋ(t)|, this indicates that the dLE detects only a fraction of the frictional
force (the first term in Eq. (4.25)) which leads to an underestimated Γ. We note that a
similar argumentation can be done for the noise amplitude K.
In summary, we have seen in this section how the dLE performance depends on the
chosen time resolution δt and how a reasonable value range can be identified. The upper
bound δtR is defined by the locality condition of the dLE field estimation while the lower
bound δtM can be interpreted as the decay time of the system memory.
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4.1.3 Rescaled dLE

In application, like for example Sec. 5.1.1, it might be possible to face the dilemma that
the time step δtM, needed to observe Markovian dynamics by the dLE, is larger then
the time step δtR, needed to resolve the dynamics accurately enough. Once δt < δtM
is chosen, we expect, based on the findings in the last section, that the friction Γ (and
by this the noise K) are underestimated by the dLE, see Fig. 4.5. Still, this effect can
be corrected by introducing the diagonal matrix S with Sii > 1 which is used to modify
the two dLE fields Γ̂ and K̂ via

(Γ̂ + 1)→ S(Γ̂ + 1)ST , (4.26)
K̂ → SK̂, (4.27)

which preserves the validity of the fluctuation-dissipation theorem (3.13). In this way we
can apply the dLE at δt < δtR and correct the most severe non-Markovian effects. The
modification defined by the two equations above motivates the name of the new approach:
rescaled dLE. In the following chapters we will see how to calibrate the matrix S based
on short-time information. We note that the rescaled dLE reminds of coarse-grained MD
approaches [67–69] where an effective time scale of the coarse-grained model is defined
by comparing the model dynamics to atomistic MD simulations.

4.1.4 Accelerating the dLE: Problems of data removal

When considering the computational costs of the whole dLE approach, it turns out that
the search for the k next neighbors represents the main bottleneck for data sets with
N ≥ 106 points. Although the use of a box-assisted search [133] helps by reducing the
scaling from ∝ N2 to ∝ N ln(N), the dLE propagation becomes tedious for N ≥ 107

data points. Unfortunately, if the dLE should be suitable to interpret enhanced sampling
data provided by MD, like the data in Sec. 5.2, it will be mandatory that it can work
with data sets of this size. This means that we have to think of some pre-processing of
the input data which allows for reasonable calculation times of the subsequently propa-
gated dLE trajectories.
Considering that the free energy of the observed system dynamics allows for the dif-
ferentiation of highly and lowly populated regions, i.e., minima and barriers, the first
idea to solve this problem might be that it should be possible to remove a lot of data
points in the minima of the free energy without harming the overall statistics since those
minima are typically excessively sampled. Still, this concept of "data pruning" proposed
by Schaudinnus et al. [43] turned out to be problematic for more than one system di-
mension. In the following we want to understand the reason for this observation before
introducing a better data reduction scheme.
As first step we consider the simplest approach to implement data pruning. Here, we
define value regions of x were data points should be removed, i.e., we specify the minima
of the free energy. Afterwards, the given data trajectory is processed from the first to
the last frame by removing trajectory pieces stochastically once the trajectory visits a
free energy minimum. Three different parameters are defined to this end: smin quantifies
the minimal length of the trajectory pieces surviving the pruning, p1 ∈ [0, 1] represents
the probability to start to remove points and p2 ∈ [0, 1] quantifies the probability to
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stop the removal once it has started. The parameter smin helps to prevent the survival
of excessively short trajectory pieces while p1 and p2 quantify the strength of the prun-
ing. They are used in the following way: once the considered trajectory reaches the
predefined value regions for more than smin steps, uniformly distributed random num-
bers ξ ∈ [0, 1] are generated until p1 < ξ is observed. At this point the removal of data
points begins. Subsequent points are removed until one of the simultaneously generated
random numbers ξ ∈ [0, 1] fulfills p2 < ξ where the erasing is stopped. If the trajectory
leaves the free energy region where data points should be removed the erasing will be
stopped as well. Once the data removal has stopped in one of those two ways, we wait
again until the trajectory spends at least smin points in one of the predefined free energy
regions before we allow for the next start of data removal as described above.
Additionally, the two parameters p1,+ ∈ [0, 1] and p2,+ ∈ [0, 1] were defined to make the
pruning more flexible. p1,+ is iteratively added to p1 for every trajectory point after
smin which has not been removed, i.e., p1,+ > 0 successively increases the probability to
remove trajectory points and leads to shorter surviving trajectory pieces. p2,+ interacts
in the same way with p2. It should be noted that these two parameters are in practice
relatively irrelevant considering the performance of the dLE applied to the pruned data.
To test this pruning approach we use a Markovian LE trajectory based on a one-
dimensional double well potential, see Fig. 4.6b, with Γ = 3000, T = 300 K, M = 400
ps and δt = 0.2 ps. The data set consists of 107 points. Two different pruning setups
are compared, the first setup uses p1 = p1,+ = 0.01, p2 = p2,+ = 0.05 together with
smin = 5 and result in 7.8 · 106 surviving points, the second one uses p1 = 0.1, p2 = 0.01,
p1,+ = p2,+ = 0 and smin = 5 and yields 1.9 · 106 remaining points, i.e., both prunings
are relatively moderate considering the simplicity of the system. The value regions to
be pruned were defined by −3.3 ≤ x ≤ −1.75 and 1.45 ≤ x ≤ 3.0. Fig. 4.6a shows the
distribution of data points before and after pruning. The second pruning shows two dis-
tinct discontinuities close to the barrier where the removal of points was stopped. When
applying the dLE to this data set the resulting free energy slightly underestimates the
barrier, see Fig. 4.6b, the deviations start exactly at x = −1.75 and x = 1.45. Dynamical
observables, like, e.g., the autocorrelation, show deviations as well.
Therefore, we have to conclude that pruning might cause problems. We can try to
understand their roots. To this end one might inspect the forward and backward dis-
placements, ∆xm+1(xm) = xm+1 − xm and ∆xm(xm) = xm − xm−1, before and after
pruning since this should directly reveal possible problems of the dLE which estimates
its fields based on those displacements. The bottom row of Fig. 4.6 shows that both dis-
placements are significantly influenced by pruning, they reveal pronounced peaks at the
borders between pruned and unpruned regions. Hence, opposed to intuition which tells
that all points are treated equally, the pruning based on constant probabilities treats
different motion patterns in different ways. To make sense of this observation one can
imagine two different trajectory pieces. Both pieces start close to one of the borders
between pruned and unpruned regions but one of the pieces, called piece 1, stays the
whole time inside of the pruned region while the other piece, piece 2, jumps back and
forth over the border. Due to the way our version of pruning works it is straightforward
to see that piece 1 will have a higher probability to loose points compared to piece 2
since all points outside of the pruned regions are by definition save from removal. This
means that points with relatively small displacements, as found in piece 1 staying the
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whole time on one side of the border, are removed with a higher probability than points
with large displacements like found in piece 2. This effect distorts the distributions
of ∆xm+1 and ∆xm and, ultimately, also the dLE dynamics which are based on those
displacements.
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Figure 4.6: Effects of data pruning based on constant probabilities. (a) The
distribution P (x)/P (0) of the complete input data (black) is compared to
P (x)/P (0) of the two pruned date sets (see text). (b) Here, we see that the
free energy of the dLE using the stronger pruned data (red) underestimates
the barrier of the reference (black) while the dLE on the weaker pruned data
(green) works flawless. The average forward displacements ∆xm+1(x) (c) and
the average backward displacement ∆xm(x) (d) are significantly influenced
by the stronger pruning.

By concluding that the main problem of pruning appears to be the transition between
pruned and unpruned regions one can try to make this transition smoother. This can
be achieved by replacing the constant probability p1 by some varying function p1(x)
which peaks in the minima. A possible choice could be a sum of Gaussian distributions
p1(x) = ∑K

i=0 Pie
−(x−xi)2/2σ2

i with K being the number of minima. Each minimum is
defined by two parameters, xi and σ2

i , representing center and width of the respective
Gaussian distribution. To inspect whether this modification improves the pruning, two
setups were tested for the double well data considered in this section. The first parameter
set is given by P1 = P2 = 0.01, x1 = −2.7, x2 = 2.4, σ2

1 = σ2
2 = 0.5, p2 = 0.005,

p1,+ = p2,+ = 0 and smin = 5. It results in 4.3 · 106 data points surviving the pruning.
The second setup is defined by P1 = 0.07, P2 = 0.03, x1 = −2.7, x2 = 2.4, σ2

1 = σ2
2 = 0.5,
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p2 = 0.005, p1,+ = p2,+ = 0 and smin = 5. It yields 1.6 · 106 remaining points. Fig.
4.7 shows in the top row that the use of a varying p1(x) allows to preserve the forward
displacements ∆xm+1 for both setups. Though, the backward displacements ∆xm still
deviate after pruning.
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Figure 4.7: Effects of data pruning based on other approaches. Replacing the
constant probability p1 by a sum of Gaussian distributions, see text, results
in the average forward ∆xm+1 and backward displacements ∆xm shown in
(a) and (b), respectively. The same quantities are shown in (c) and (d) for
the pruning approach suggested by Schaudinnus et al. [43]

Considering that pruning approaches based on local probabilities might be generally
problematic, we can inspect the approach presented by Schaudinnus et al. [43] which is
conceptually different so that it might circumvent the observed problems. This pruning
starts by cutting the coordinate range of the first system coordinate into a discrete
bins. Afterwards, b points in each bin are randomly selected from the full trajectory to
become the starting points of short trajectories. Each of these short trajectories consists
of maximal c consecutive points. Since it does not make sense to select any input data
point more than once, it might be the case that individual short trajectories are cut before
reaching length c. Since points on the barrier have, compared to points in the minima
which are more numerous, a higher probability to be part of the b selected starting points
or the c consecutive points, this approach removes more points in the minima than on
the barrier, i.e., it achieves the desired data reduction in excessively sampled regions of
the free energy. To test the performance of this approach, we inspect, again, two setups.
Once the three parameters are set to a = b = 100 and c = 700 and once a = b = c = 100
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is used. The former pruning results in 4.2 · 106 data points and the latter setup yields
0.86 · 106 points. When inspecting the pruned data, Fig. 4.7 shows in the bottom row
that the fundamental problem of spoiled backward displacements ∆xm cannot be solved.
Again, this can be understood by considering the two trajectory pieces inspected above.
Piece 1, which had a higher probability than piece 2 to lose points, is now very likely
to be assigned to a single bin. The points of piece 2, in contrast, have good chances to
belong to several bins since piece 2 is more dynamic. This means that the points of piece
1 have to compete with relatively many points found in its bin close to the free energy
minimum while the points of piece 2 can escape to more sparsely populated bins at the
barrier of the free energy where the chances are higher to survive the pruning. Hence,
again, the pruning approach favors some distinct motion patterns.

4.1.5 Accelerating the dLE: Binned dLE
After all it must be concluded that the unbiased removal of redundant data is problematic
to implement. To develop an alternative strategy to tackle the problem of extensive
input data sets, one can recapitulate the formulation of the dLE itself. When inspecting
the equations (4.12), (4.13) and (4.14) it becomes apparent that only local averages
of ∆xm+1 and ∆xm as well as averages of the products ∆xm+1∆xTm+1, ∆xm∆xTm
and ∆xm+1∆xTm are needed to estimates the Langevin fields. This indicates that it
is conceptually possible to formulate some "pre-averaging" which replaces the explicit
N input data points by M � N grid points which record sufficiently local averages of
∆xm+1, ∆xm, ∆xm+1∆xTm+1, ∆xm∆xTm and ∆xm+1∆xTm.
The approach we are proposing at this point starts by separating each of the d dimensions
of the system description x into s coarse bins. All these sd cells are treated independently
to account for the different sampling qualities of barrier and minima. First of all, the
individual cells are once again separated into bdmin fine bins by evaluating the input
parameter ωmax which quantifies the maximally allowed width of each fine bin. Here, the
coordinate with the smallest value range is used to determine bmin. This step ensures that
the pre-averages on the barrier stay sufficiently local. Then the number of data points
Ns found in each of the coarse bins is determined to calculate bpoints = (Ns/Nmax)1/d

by using the additional input parameter Nmax. This parameter quantifies the average
maximal number of points which should be averaged in lowly sampled regions of the
free energy landscape. If bmin < bpoints holds in some coarse bin, it will separated into
bdpoints instead of bdmin fine bins. Finally, the last input parameter ωmin representing the
minimally desired bin width is used to determine bmax, the maximally allowed number
of fine bins per coarse bin. If bmax < bpoints holds, the coarse bin will be separated into
bdmin instead of bdpoints fine bins. This step prevents that unnecessarily many fine bins are
used to average in the minima of the free energy.
This adaptive pre-averaging adjusts the binning depending on the local sampling, i.e.,
while only few points are averaged on the barrier, the minima are averaged with higher
resolution but nevertheless larger sampling sizes Ni. By saving the averages of ∆xm+1,
∆xm, ∆xm+1∆xTm+1, ∆xm∆xTm and ∆xm+1∆xTm together with the number of averaged
points Ni in each of the bd fine bins, it is possible to rewrite the next neighborhood
average Eq. (4.10) to

B(yn) = 〈B(xm)〉 = 1
k

(N1〈B(x)〉1 + ...+Nr〈B(x)〉r) (4.28)
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after assuming that ∑r
i=iNi = k holds for the r neighboring bins of point yn. Hence,

only r � k neighbors out of s · bd = M � N candidates need to be found. Fig. 4.8
illustrates this procedure which drastically decreases the computation times of the dLE.

dLE point

neighbouring bin

distant bin

Figure 4.8: Illustration of the binned dLE. Instead of scanning the initial input
trajectory for the k next neighbors of dLE point yn (black), the binned dLE
detects the r closest bins (blue) of the pre-averaged data. Bins with a larger
distance (red) are not considered in the field estimation.
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Figure 4.9: Binned dLE for double well data. (a) The binned dLE successfully
reproduces the system dynamics of the reference (black dots) down to only
M = 50 pre-averaged input points as can be seen exemplary for the free
energy. Stronger pre-averaging leads to wrong dynamics as shown forM = 25
points. (b) This can be explained by wrong drift estimates f̂(x). While the
binned dLE with b = 50 only overlooks unimportant oscillations but follows
the right curve (compared to the normal dLE in blue), M = 25 spoils the
overall shape.

We note that field estimates based on Eq. (4.28) are exactly the same as if they would
have been determined based on Eq. (4.10) as long as the pre-averaging is sufficiently local,
i.e., the method is does not influence the dLE field estimation. Data-driven Langevin
simulations based on pre-averaged data are called binned dLEs in the following.

52



4 Data-driven Markov modeling

When considering the double well data used to investigate the different data pruning
approaches, it turns out that it is possible to go down to only M = 50 pre-averaged
input points, see Fig. 4.9. Less points spoil the model dynamics but the reduction from
107 to only 50 is already massive and shows that the binned dLE approach is very stable.
Hence, we can conclude that the pre-averaging of extensive input data sets is well suited
to accelerate dLE studies. In addition, we note the advantage that this procedure is
deterministic, i.e., the result of the pre-averaging is always the same if the parameters
stay unchanged.

4.2 Alternative dLE formulation

Having considered the acceleration of the established dLE framework, we will now inspect
alternative dLE implementations. As starting point we recapitulate that the dLE intro-
duced in Sec. 4.1 is based on three assumptions. First, we suppose that the Markovian
Langevin equation is suitable to describe the observed dynamics. Second, we demand
that the k next neighbors used to estimate the Langevin fields are sufficiently local ev-
erywhere in coordinate space. And third, it is claimed that the Euler integrator defined
by Eq. (3.32) and Eq. (3.33) is sufficiently accurate at the considered time resolution δt
to produce meaningful trajectories. While the validity of the first assumption makes or
breaks the whole dLE modeling framework, we can think of possible improvements for
the other two points, i.e., we can think of better ways to estimate the fields and a more
accurate integrator which extends the range of acceptable time steps δt.
Considering the fields estimators, it is possible to define the neighborhood by a fixed
radius r instead of a fixed size k. This means that we can search for all data points
xi which lie within a hypersphere of radius r centered at the current dLE point y(t)
instead of the k next neighbors, just as it is done, e.g., in the density-based clustering
approach of Sittel and Stock [60]. This has the advantage that the locality of the field
estimates is actively ensured. On the other hand, the convergence of the field estimates
becomes problematic if only few points are found. This indicates that especially barrier
regions are problematic. While this is acceptable for the density-based clustering of
Sittel and Stock [60], which primarily aims for the identification of the minima of the
free energy, the dLE needs to be able to estimate reasonable fields on the barriers as
well since it wants to cross them in a dynamical way. Hence, it makes sense to prioritize
the statistical convergence of the field estimates over the locality on the barrier, i.e.,
the k-next-neighbors approach is advantageous. Additionally, it can be expected that
the k next neighbors found in free energy minima are local anyway, i.e., we do not gain
anything at this point when replacing the neighborhood estimation. This consideration
can be validated by exemplary dLE calculations using our, by now well known, double
well data. Replacing the k next neighbor average by an averaging employing a fixed
neighborhood radius r does not improve the dLE results in any way (not shown). Due
to the excellent sampling of the one-dimensional data we do not observe problems on the
barrier but this would certainly change if high-dimensional data with less ideal statistics
is inspected.
Considering the integrator underlying the dLE framework, it is mandatory that it allows
for the reconstruction of the Langevin fields only based on the discrete input trajectory
xn. This means that the OVRVO integrator considered in Sec. 3.3 is not suitable since it
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does not simply perform the jump t→ t+ δt but instead uses three artificial intermedi-
ate points to propagate the velocity. Alternatively, we can use a Verlet integrator [134],
which is, in theory, also superior to the Euler integrator, to formulate an alternative dLE
implementation. To this end we start with the equations

x(t+ δt) = x(t) + ẋ(t)δt+ 1
2 ẍ(t)δt2 + 1

3!
...
x(t)δt3 +O(δt4), (4.29)

x(t− δt) = x(t)− ẋ(t)δt+ 1
2 ẍ(t)δt2 − 1

3!
...
x(t)δt3 +O(δt4), (4.30)

representing the Taylor expansion of x(t) for t → t + δt and t → t − δt, respectively.
Adding both expansions yields

x(t+ δt) = 2x(t)− x(t− δt) + ẍ(t)δt2 +O(δt4) (4.31)
which leads to

xm+1−xm = xm−xm−1 + 1
M

(−∇F (xm)−Γ(xm)ẋm(t) +K(xm)ξmδt−1/2)δt2 (4.32)

after neglecting O(δt4) and higher orders. Additionally, xm = x(mδt) was defined and
K(xm) =

√
2kBTΓ(xm) was inserted. The equation above almost matches Eq. (4.5), only

ẋm(t) is undefined so far. To get the Euler implementation from Sec. 4.1 one assumes
ẋm ≈ (xm − xm−1)/δt but here we follow the Verlet approach [134] and subtract Eq.
(4.30) from Eq. (4.29) to get

ẋm ≈
xm+1 − xm−1

2δt (4.33)

after neglecting O(δt3) and higher orders. Inserting this expression of ẋm into the
equation of motion leads to

∆xm+1 = (1 + Γ̃(xm))−1(f̃(xm)− (Γ̃(xm)− 1)∆xm + K̃(xm)ξm) (4.34)
after isolating ∆xm+1. Here, we defined the Verlet-dLE fields as

f̃(xm) =M−1δt2∇F (xm), (4.35)

Γ̃(xm) =M−1 δtΓ(xm)
2 , (4.36)

K̃(xm) =M−1δt3/2K(xm), (4.37)
in parallel to the Euler implementation in Sec. 4.1.
Now, equations need to be found to estimate the fields based on a given trajectory x(t)
to be able to propagate the Langevin trajectory y(t) in parallel. The calculations are
very similar to the ones of the Euler-dLE in Sec. 4.1 and can be found in the Sec. A.2.
In the end we get

Γ̃(yn) =Cov(∆xm,∆xTm)(Cov(∆xm+1,∆xTm) + Cov(∆xm,∆xTm))−1

− Cov(∆xm+1,∆xTm)(Cov(∆xm+1,∆xTm) + Cov(∆xm,∆xTm))−1,

(4.38)

f̃(yn) =(1 + Γ̃(yn))〈∆xm+1〉+ (Γ̂(yn)− 1)〈∆xm〉, (4.39)

K̃(yn)K̃(yn)T =(1 + Γ̃(yn))Cov(∆xm+1,∆xTm+1)(1 + Γ̃(yn))T

− (Γ̃(yn)− 1)Cov(∆xm,∆xTm)(Γ̃(yn)− 1)T ,
(4.40)
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which can be calculated based on a local neighborhood like already known from the
Euler-dLE.
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Figure 4.10: Markovian double well model with Verlet-dLE. (a) Shown are the free
energies explored by the input data, called MD, and Verlet-dLEs at different
time steps. The dashed lines show the cores of the two states R and L, see
the text, which are used to quantify the system dynamics. (b) The Verlet-
dLE estimates of friction Γ and noise amplitude K for different time steps.
The black line shows the expected values. (c) Here, the autocorrelation of
the reconstructed noise at different δt is shown. (d) We see the transition
times τL↔R estimated by the Verlet-dLE at different δt (dots) compared to
the expectations (lines). In red we see L→R while blue represents R→L.

Now, it can be checked if the Verlet-dLE performs better than the Euler-dLE. We are
especially interested if the Verlet-dLE successfully works with larger δt. To be in line
with Sec. 4.1.2, the known double well potential with sine overlay together with the
friction Γ = 3000, the temperature T = 300 K and the M = 400 ps is considered.
The Markovian Langevin equation is integrated using the Verlet integrator (4.34) with
a time step of δt0 = 20 fs to record dynamics for 200 ns. This trajectory is used as
input for the Verlet-dLE. We consider, again, the two borders δtM and δtR limiting the
range of suitable time steps. While we expect again that δtM = δt0 holds because of the
Markovian nature of the data, it could be the case δtR turns out to be larger than for
the Euler-dLE due to a more robust definition of the velocity in the Verlet framework.
A larger δtR would be advantageous in practice since it would allow for the treatment
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of systems where δtM ≥ δtR holds in the Euler framework.
Though, the results for our exemplary double well indicate that the Verlet-dLE shows
the same δtR than the established dLE approach based on the Euler integrator. Fig.
4.10 is mostly identical to Fig. 4.2, qualitatively correct estimates of Γ and K can only
be found for δt ≤ 4 ps while the main barrier of the free energy is reproduced up to
δt = 20 ps. The transition times τL↔R start to deviate from the expectations once the
fields Γ and K are overestimated. Considering the lower bound δtM, we note that we
observe indeed Markovian noise for all possible δt, just as expected.
To understand why the Verlet-dLE does not allow for a larger δtR we need to remember
that the field estimation assumes that the neighborhood of the actual trajectory points
behaves sufficiently local. This does not only indicate that there need to be sufficient
close neighbors but also that the predecessors and followers of those points are not
too far away. This follows from the fact that the field estimations are based on the
displacements ∆xn and ∆xn+1, i.e., the fields are detected in terms of their influence on
the jump from xn−1 to xn and onwards to xn+1. If the system jumps too far we will not
be able to ensure that the system detects local values of the different fields and the dLE
is propagated with wrong forces. However, the displacements ∆xn and ∆xn+1 at large
δt ≈ δtR are a priori physical quantities which should be independent of the actually
used integration scheme which was used to generate the input data with the integration
time step δt0 � δtR. The long-time behavior of the whole system would depend on the
used integrator if this did not hold. Hence, any lack of neighborhood locality at some
large δt cannot be corrected by simply switching the dLE integrator.

4.3 Markovian Langevin model via dissipation-corrected
targeted MD

Another possibility to parameterize the Markovian Langevin equation in a data-driven
way is provided by the dissipation-corrected targeted MD (dcTMD) framework. In
contrast to the dLE which uses unbiased MD, dcTMD studies are based on targeted
MD simulations (TMD) as developed by Schlitter et al. [126] where a constraint force
fc evokes a moving distance constraint x(t) = x0 + vvt of the one-dimensional system
coordinate x. This allows to enforce the movement from the starting point x0 to the
end point x1 which could describe, e.g., the unbinding of a ligand [125]. In the following
we will have a look at the main dcTMD equations derived by Wolf and Stock in [42].
Results of dcTMD studies from [125] are shown in Sec. 6.2.
The main assumption of dcTMD is that the TMD system dynamics can be described by
the Markovian Langevin equation via

0 =Mẍ(t) = −dF
dx
− Γ(x)ẋ(t) +

√
2kBTΓ(x)ξ(t) + fc(t), (4.41)

which only deviates by the constraint fc from the Markovian LE in the sections above.
Note that the constant velocity ẋ(t) = vc (preserved by fc) allows us to set ẍ = 0.
To derive an estimate for the free energy at point x, it is possible to perform an ensemble
average over numerous dcTMD runs which yields based on 〈ξ(t)〉 = 0 [42]

F (x) = 〈W (x)〉 − vc
∫ x

x0
Γ(y)dy + const (4.42)
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after integrating over x. 〈W (x)〉 =
∫ x
x0
〈fc(y)〉dy represents the averaged external work

performed on the system. The second term Wdiss = vc
∫ x
x0

Γ(y)dy corresponds to the
dissipated work. To decouple free energy and friction, Jarzynski’s identity [135]

e−F (x)/kBT = 〈e−W (x)/kBT 〉 (4.43)

is used since it allows to calculate the free energy directly from dcTMD data. Since the
exponential average on the right side shows convergence problems [136], Wolf and Stock
invoked a second-order cumulant expansion which leads to

F (x) = 〈W (x)〉 − 〈δW
2(x)〉

kBT
, (4.44)

with δW (x) = W (x) − 〈W (x)〉. By comparing this equation with Eq. (4.42) and by
expressing the work fluctuations δW (x) in terms of force fluctuations δfc = fc(x) −
〈fc(x)〉, it can be shown [42] that

Γ(x) = 1
kBT

∫ t(x)

t0
〈δfc(t)fc(t′)〉dt′, (4.45)

holds which allows for the calculation of Γ(x) from a set of dcTMD simulations. By
inserting the result into Eq. (4.42) it is possible to extract the free energy estimate from
the data.
As discussed in [42], the derivation of Eq. (4.41) based on the equilibrium fields F (x) and
Γ(x) requires a slow pulling velocity vc compared to the time scales of the bath fluctua-
tions. This makes it possible to interpret the effect of fc as a slow adiabatic change [137]
so that the equilibrium observables F (x) and Γ(x) stay unperturbed. In consequence,
we can use the dcTMD estimates of F (x) and Γ(x) to simulate equilibrium trajectories
of the considered dynamics by numerically integrating the Markovian LE (3.28), just as
we know it from the dLE. Still, the main downside of the dcTMD framework compared
to the dLE is the fact that it can only deal with one-dimensional system descriptions
due to the inherently one-dimensional nature of the constraint force fc.
Additionally, it needs to be kept in mind that Eq. (4.45) is based on a cumulant expan-
sion of Jarzynski’s identity which is only valid as long as the work W (x) is Gaussian
distributed everywhere along x. This might be not fulfilled for systems which do not
follow a single reaction pathway which means that it is mandatory for more complicated
systems to extract the dominant pathway [138, 139] before analyzing the dcTMD runs.

4.4 Markov state model: Importance of state definition
Having considered the parameterization of the Markovian Langevin equation for exem-
plary data, see Sec. 4.1.2, we can now use the same double well system to discuss the
calibration of a Markov state model (MSM), see Sec. 3.1. Here, the most important step
is the definition of discrete states, see Sec. 2.5. For the double well system the states
appear to be obvious: there are two minima, the state R and the state L, indicated
by the minima of the free energy. Still, it plays an important role how the states are
separated.
We will now test two state definitions. On the one hand, the states can be defined by
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their cores just as it was done to calculate the average waiting times for the dLE in Fig.
4.2 and Fig. 4.5. Here, R is defined by x ≤ −1.7 and L is given by x ≥ 1.4. Trajectory
pieces outside of this region are assigned to the previously visited state to ensure that
every trajectory point has a clear state assignment. One the other hand, one can use
the more straightforward approach of cutting directly on top of the barrier at x = 0.
Having chosen the states, we need to choose the lag time τ which plays the same role
as the time step δt for the dLE. It needs to be larger than intrastate fluctuations but
at the same time smaller than the interstate dynamics which should be modeled by the
MSM.
Based on our two state separations we can inspect the implied time scale derived from
transition matrices T (τ) at various different τ to find appropriate lag times, see Sec. 3.1.
As can be seen in Fig. 4.11a, using the first state definition results in a constant implied
time scale which indicates that τ is free to choose. When looking at the τ -dependence
of the average waiting times predicted by MCMC runs, on the other hand, it can be
observed that τ ≤ 1 ns is needed to get accurate results. This makes sense considering
that the L↔R dynamics itself are of the order of nanoseconds, i.e., τ can maximally be
of this order if it should be able to resolve the dynamics.
By instead using the top of the barrier as state border we see the same upper bound on
τ . Still, it can be additionally observed that τ < 0.4 ns yields underestimated waiting
times. The implied time scale is influenced as well, it rapidly decays for small τ . This
behavior can be understood by considering that we now include spurious recrossings
on top of the barrier in our state definition, i.e., the separation of intra- and interstate
dynamics is significantly worse.
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Figure 4.11: Markov state model of Markovian double well data. (a) The implied
time scale of the MSM constructed for the Markovian double well data
depends on the chosen state borders. (b) The average waiting times (circles
represent L→R and squares R→L) calculated from MCMC runs based on
MSMs at different τ underpin this observation. If cored states are used it
is possible to use basically every lag time smaller than the observed R↔L
dynamics. If the states are cut directly on top of the barrier, τ ≥ 0.4 ns
will be needed.

Hence, we observe already for this objectively simple double well system that the state
definition represents a crucial step of MSM construction. Just as we have seen here it
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is often advantageous to use some sort of coring when generating an MSM, see Sec. 2.6,
may it be geometrical (like used here) or dynamical.

4.5 Summary
We recapitulated the main equations of the data-driven Langevin approach in Sec. 4.1
and applied the dLE to exemplary model data. It was observed that the dLE correctly
approximates memory-based dynamics if the time step δt used to evaluate the data is
larger than the decay time of the system memory. On the other hand, δt needs to be
small enough to preserve the locality of the field estimates so that the dynamics can be
resolved sufficiently fine. These two conditions define a value range for δt where the dLE
works successfully.
Still, in practice the resolution criterion might enforce a time step which is smaller than
the decay time of the system memory. In this case we observed that the dLE tends
to underestimate the friction Γ and we suggested the rescaled dLE to compensate this
effect. In the following chapters we will observe that the rescaled dLE can be very useful
to derive robust Markovian Langevin models.
Subsequently, we discussed the application of the dLE to extensive input data where
the standard field estimation becomes prohibitively slow. Based on the observation that
the removal of (apparently redundant) data points proves complicated (Sec. 4.1.4), we
proposed the binned dLE approach in Sec. 4.1.5. Here, we formulated a "pre-averaging" of
the input data by exploiting how the dLE estimates the fields. This allows to drastically
reduce the number of data points which need to be scanned by the dLE in every time
step. Considering exemplary double well data, we saw that it was possible to reproduce
one-dimensional dynamics only based on 50 input points.
Since the Euler integrator used to derive the established dLE is relatively simple, we
derived the Verlet-dLE in Sec. 4.2 to inspect if a more elaborate integrator allows for
the use of larger time steps. Still, due to the fact that the data displacements ∆x used
to estimate the Langevin fields are a priori physical quantities at large δt, we observed
that the dLE integrator has only minor influences on the range of valid time steps.
Afterwards, we inspected in Sec. 4.3 an alternative approach to parameterize a Markovian
Langevin model: dissipation-corrected targeted MD. This approach uses constraint MD
simulations to derive one-dimensional Langevin models of the dynamics of interest. To
conclude this chapter we inspected in Sec. 4.4 the performance of Markov state models
for our exemplary double well model. Already for such simple data it was observed that
the careful definition of states is very important.

59



60
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"Facts are meaningless. You could use facts to
prove anything that’s even remotely true!"

– Homer Simpson, "The Simpsons", season 9, episode 8

Having established the data-driven Markovian modeling framework in the last chapter,
we can now apply it to small biomolecular systems to test its robustness. First, sodium
chloride (NaCl) is inspected. Considering an one-dimensional system description, we
will inspect the dLE performance for varying time steps and we will apply the rescaled
dLE. It will be shown how to calibrate the rescaling matrix S based on the initial
decay of the position autocorrelation function. Afterward, we will inspect if a memory-
based Langevin description improves the model consistency and compare the Langevin
framework to the capabilities of a Markov state model and the results of a dcTMD-based
parameterization of the Langevin fields.
Subsequently, we will inspect the small nine-residue peptide AIB9. Considering a large
enhanced sampling data set [73] and using a five-dimensional system description, this
system is more complicated to model. First, dLE dynamics at several time steps are
inspected to find a suitable δt. Afterwards we will see that the rescaled dLE can be
used to optimize the Langevin model and that the pre-averaging of the binned dLE
allows us to reduce the number of input points by a factor of 100 without harming the
model dynamics. Having established a reasonable Langevin model, it will be possible
to compare its predictions to a Markov state model derived by Biswas et al. [73].
Additionally, we will compare the model predictions to results of an alternative Markov
state model based on the MELD (Modeling Employing Limited Data) protocol [140].

5.1 Study of sodium chloride

As first application of the modeling framework developed above, we are investigating the
association and dissociation of sodium chloride (NaCl). The considered MD simulations
of NaCl were performed and described by Wolf and Stock [42]. Details on the MD setup
can be found in Sec. A.4.1. Two trajectories were simulated. The first trajectory has a
length of 200 ns and was recorded at a resolution of δt0 = 10 fs. It will serve as input
for our Markov models. The second simulation collects the time evolution for 1 µs but
only at a resolution of δt0 = 1 ps. We will use this simulation as reference to assess the
accuracy of the models.
The interionic distance x is used as single reaction coordinate since it naturally resolves
the process of interest. As can be seen in Fig. 5.1 the free energy along x reveals a high
barrier at x ≈ 0.4 nm separating the bound state at x ≈ 0.27 nm from the free state
at x ≥ 0.5 nm. The bound state is very narrow and the adjacent barrier turns out to
be relatively steep. Looking closer at the free energy, we see a second smaller barrier
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at x ≈ 0.6 nm which represents the transition between a shared and two separated
hydration shells [141]. The considered value range of the ion distance x is restricted to
0.265 nm < x < 1.265 nm [125] by removing trajectory points outside of this region
completely from the trajectory. The idea behind this procedure is to mimic a more
natural spherical system instead of the simulated cubic box, i.e., border artifacts at
large x should be removed. On the other hand, the lower border of x is imposed to get
rid of spurious behavior at artificially low ion distances.
For completeness it should be noted that it is somewhat bold to assume that x represents
a complete description of all important dynamics of NaCl. It is well known that the
solvent plays an important role as well [141] which is not surprising considering that
solvent and NaCl are of the same size. Still, it will be shown in the following that x is
sufficient to construct satisfactory models. As first step we will derive a dLE model of
the dynamics of NaCl.
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Figure 5.1: Association and dissociation of NaCl in water. (a) The two ions of
sodium chloride associate and dissociate if solvated in water. The interionic
distance x can be used to resolve this process. (b) The free energy landscape
reveals a pronounced barrier separating those states. A normal dLE and
the rescaled dLE at δt = 10 fs (green and red, respectively) successfully
reproduce the free energy while dLEs at δt = 60 fs (blue) and δt = 100 fs
(cyan) overestimate the depth of the bound state. The illustrations of the
associated and the dissociated state in the top figure are adopted from [42].

5.1.1 dLE modeling of sodium chloride
In parallel to Sec. 4.1.2, we start the dLE modeling with the determination of the two
limiting time steps δtM (following from the Markovianity condition) and δtR (based on
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the need to resolve the dynamics sufficiently fine). To identify δtM one can investigate
the noise ξ found in the data by the dLE as described in Sec. 4.1. Different time steps
were tested starting at δt = 10 fs. Fig. 5.2a shows that this time step is too short to
ensure that the noise autocorrelation Cξ decays in a single time step. When increasing δt,
it turns out that δt ≥ 60 fs is needed to observe the expected instantaneous decay. This
observation is independent of position x, as can be seen in Fig. 5.2b, locally calculated
noise autocorrelations show approximately the same first step Cξ(δt) everywhere along
x. Another important aspect of ξ is that it is expected to follow a normal distribution.
Fig. A.1 in the Sec. A.6 reveals that the noise at δt = 10 fs meets the expectations while
δt = 60 fs results in deviating distributions at small x, i.e., in the bound state. We see
a clear bias to negative numbers, the peak of the distribution is shifted from ξ = 0 to
ξ ≈ −0.5. For larger time steps, like δt = 100 fs, this effect becomes even more severe.
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Figure 5.2: Reconstructed noise for NaCl. (a) The autocorrelation of the noise ξ
does not decay instantaneously for the smallest time step δt = 10 fs (green).
The same holds for the rescaled dLE (red) since it uses the same δt. At larger
time steps of δt = 60 fs (blue) and δt = 100 fs (cyan) the autocorrelation
decays, as wished, immediately. (b) The locally calculated first step of the
noise autocorrelation Cξ(δt) shows that it is approximately independent of
the position.

We can conclude that the noise check indicates that NaCl might have the problem
that δtR < δtM could hold, i.e., the time step needed to observe Markovian dynamics
might be larger than allowed by the resolution criterion. To check this suspicion dLE
simulations at different time steps were performed. As shown in Fig. 5.1, we can, indeed,
only reproduce the correct free energy for δt = 10 fs. Larger time steps lead to an
overestimated depth of the bound state and by this to a higher barrier for the bound →
unbound transition. The remaining parts of the free energy and the barrier of unbound
→ bound are well reproduced by all dLEs in contrast. This makes sense considering
that the bound state is very narrow compared to the rest of the free energy, i.e., it is
the most complicated feature to resolve by the dLE.
Hence, we observe that δtR = 10 fs (needed to resolve the dynamics by the dLE) is
smaller then the Markovian limit δtM = 60 fs. To circumvent this problem it is possible
to analyze the dLE estimates of friction Γ and mass M aiming for a model which can
be used by Langevin simulations integrated at a δt which is small enough to resolve the
bound state. As we see in Fig. 5.3, both fields are approximately constant at δt = 10 fs.
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The mass approximately reproduces the reduced massM ≈ 211 ps of the NaCl dimer.
When increasing δt to δt = 60 fs or δt = 100 fs, we can see that Γ and M start to
develop a pronounced peak in the bound state. Given that the dLE struggles at exactly
this region of the free energy, it is reasonable to assume that those peaks are artificial,
i.e., the constancy of the fields observed at δt = 10 fs appears to be more reliable than
the dependence on x for larger time steps.
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Figure 5.3: Friction and mass estimates of the dLE. The estimates of the friction
Γ (a) as well as the estimates of the massM (b) show pronounced peaks in
the bound state for larger time steps. The black curve in both plots shows
the free energy for reference while the black horizontal line in (b) represents
the reduced mass of the NaCl dimer.

Following this assumption, averages of Γ and M were calculated based on dLEs at
various different δt by only taking points x ≥ 0.6 nm into account. Fig. 5.4a shows
that the means of friction and mass, called Γ̄ and M̄, both increase with growing δt. In
contrast to our double well model, Fig. 4.2 and Fig. 4.5, we do not see any plateau for Γ̄
which would indicate a suitable friction estimate. This has the consequence that direct
results of Langevin simulations using these fields need to be inspected to judge on the
reliability of the field estimates. Hence, Langevin simulations using the Euler integrator
were run employing an integration time step of δtintegrate = 1 fs to ensure that the bound
state is sufficiently resolved. As dynamical observable to judge the performance of the
different Langevin models we define the bound state by x ≤ 0.37 and the free state
by x ≥ 0.6 and calculate the transition times between them, called association time τA
and dissociation time τD. Fig. 5.4b shows that the dLE estimates for δt = 60 fs and
δt = 100 fs lead to good estimates of both times τD and τA and additionally to a good
reproduction of the position autocorrelation Cx(t). This indicates that the information
τM ≥ 60 fs gained from inspecting the noise estimated by the dLE, see Fig. 5.2, is indeed
accurate. If there had not been problems to resolve the bound state, the dLE would
have predicted correct dynamics.
By comparing Γ̄ estimated at δt = 10 fs to the estimate at δt = 60 fs we see that the
dLE underestimates the friction at the smaller time step, just as it was observed and
theoretically explained for the double well system above. Again, the dLE overlooks parts
of the frictional force at δt = 10 ps which leads to an underestimation of the dynamics,
i.e., τA, τD and the decay time of the autocorrelation are predicted too small.
While the detour via Langevin simulations based on averaged dLE fields allows to create

64



5 Markov modeling of small systems

a reliable Langevin model, it would be less cumbersome if we could use the rescaled
dLE, see Sec. 4.1.3, to correct for the underestimated friction at δt = 10 fs. Especially
considering that the dLE modeling aims in general for high-dimensional system dynamics
where it becomes very complicated to deduce an optimized Langevin model by hand.
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Figure 5.4: Results of the dLE modeling of NaCl. (a) Here, the averages of fric-
tion Γ and massM calculated from dLEs at different time steps are shown.
(b) Dissociation and association times, called τD and τA, of Langevin sim-
ulations based on the averages in (a) and the given free energy. The two
horizontal lines in this plot represent the MD values, the crosses estimates of
the rescaled dLE. Additionally, the position autocorrelation Cx(t) (c) as well
as the velocity autocorrelation Cv(t) (d) of MD and Langevin simulations
are shown.

When applying the rescaled dLE we need to find a suitable rescaling factor S which allows
for reliable dLE dynamics at δt = 10 fs, i.e., we want to preserve the good resolution at
this time step and correct for the underestimated friction. Using directly the transition
times τA, τD or the complete autocorrelation Cx(t) to check the influence of different
values of S would massively harm the predictive power of the resulting model since we
would only reproduce information which we put into the model beforehand. Hence, we
will inspect if some short-time observable can be used to calibrate the rescaled dLE.
One possible choice at this point is the initial decay of the position autocorrelation.
As can be seen in Fig. 5.5, the Langevin models deduced from the dLEs at δt = 60 fs
and δt = 100 fs approximately follow the initial decay of the MD autocorrelation when
inspecting the time up to t = 25 ps. The dLE at δt = 10 fs decays too fast. When
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using S > 1 the rescaled dLE at δt = 10 fs decays slower than the normal dLE. At
S = 1.87 the rescaled dLE coincides with the MD, i.e., this setup is a good candidate to
predict long-time dynamics accurately. As shown in Fig. 5.4, the rescaled dLE indeed
produces accurate transition times τA and τD and follows the complete decay of the
autocorrelation Cx(t) as well. Hence, the rescaled dLE successfully predicts long times
only based on short-time information which means that it has predictive power.
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Figure 5.5: Initial decay of the autocorrelation of MD and dLE. Friction and mass
estimated by dLEs at δt = 60 fs (blue) or δt = 100 fs (cyan) approximately
reproduce the MD (black) while the dLE at δt = 10 fs decays too fast.
The rescaled dLE with S = 1.87 (red) closely matches the MD. Averages of
friction and mass deduced from the rescaled dLE lead to Langevin dynamics
which deviate only marginally from the original rescaled dLE (purple).

Still, there are also some drawbacks. The noise deduced from the data via the rescaled
dLE clearly reveals that we actively modify the Langevin model. The noise distribution
(see Fig. A.1) becomes narrower than the normal distribution and the noise autocorre-
lation shown in Fig. 5.2 decays even slower than the unrescaled dLE at δt = 10 fs. Since
the propagation of the rescaled dLE uses normally distributed white noise, we have to
expect that the rescaled dLE will predict some characteristics of the MD data wrongly.
Given that the rescaled dLE is especially aiming for correct long times and taking into
account that the noise of the data decays on a short time scale of several tens of fs,
it makes sense to assume that the rescaled dLE deviates from MD for dynamics which
evolve on those fast time scales. When inspecting the velocity autocorrelation Cv(t) with
v = (xn− xn−1)/δt, see Fig. 5.4, we see that the rescaled dLE indeed decays faster then
the MD. Please note that Cv decays on a time scale of 100 fs while Cx decays on 100
ps, i.e., there is a clear separation of time scales between both observables. Given that
Cv(t) can be related to the memory kernel of an generalized Langevin description of the
dynamics [142] it makes sense that the rescaled dLE, using perfectly Markovian noise,
fails to reproduce the MD. Interestingly, the normal dLE at δt = 10 fs reproduces the
first 20 fs of the reference Cv(t) but fails for larger times. This shows that the rescaled
dLE actively sacrifices short-time dynamics for correct long-time observables since it is
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not possible to cover both by a Markovian Langevin model at δt = 10 fs.
Since friction and mass are nearly independent of x for δt = 10 fs, see Fig. 5.3, it makes
sense to assume that averages of both fields derived from the rescaled dLE provide a
consistent model as well. When inspecting Langevin simulations using those averages it
turns out that this is indeed true. Fig. 5.5 shows that the initial decay of Cx(t) matches
MD and rescaled dLE. The same holds for long-time observables like τA and τD. Hence,
we can conclude that a Langevin model consisting of the free energy, a constant friction
Γ and a constant massM is sufficient to cover the long-time dynamics of NaCl.
As final point of this section we have to discuss a technical aspect. Considering the
estimator of Γ̂, see Eq. (4.12), it turns out that large values of S may lead to consistency
problems. When approximating the denominator of Eq. (4.12) by Cov(∆xm,∆xm) =
σ2

∆xm
≈ σ∆xm+1σ∆xm it turns out that the friction can be approximated by the negative

velocity autocorrelation Γ̂ ≈ −Cv(δt) which means that it is restricted to 0 < |Γ̂| < 1.
While relatively small rescaling factors, like S = 1.87 found for NaCl, are unproblematic,
large S may lead to friction factors contradicting the limits on Γ̂. Still, there is a way to
counter this effect. Considering Eq. (4.7) to (4.9) (for the purpose of generalization in
the multidimensional case) we see that there is a clear rule how the time step δt enters
the different fields f̂ , Γ̂ and K̂. Since δt represents the integration time step of the
numerical scheme used to integrate the dynamics, it is possible to rescale it by a factor
0 ≤ α ≤ 1 so that δt′ = αδt becomes the new integration time step. This idea leads to
the dLE fields f̂ ′ = α2f̂ , Γ̂′+ 1 = α(Γ̂ + 1) and K̂′ = α3/2K̂. Considering that (Γ̂ + 1) is
multiplied by S and ST , we see that α = max(Sii)−2 guarantees that 0 ≤ |Γ̂| ≤ 1 holds
for all S.
In summation, the dLE modeling of NaCl consisted of the following steps. First, the
unrescaled dLE was applied to detect the two borders δtM and δtR. Observing that
δtM > δtR holds, we used in a second step the initial decay of the position autocorre-
lation to calibrate the rescaling factor S of the rescaled dLE. This procedure provided
a dLE model which could successfully predict the long-time dynamics of NaCl. We ex-
pect (and will show in the following chapters) that this procedure can be used for other
systems as well. Still, it might be necessary to rescale the dLE integration time step by
α = max(Sii)−2 to ensure model consistency.

5.1.2 Influence of memory

Up to this point we modeled NaCl based on a Markovian model. Since it might be
possible that the rescaling of the friction could be circumvented by including system
memory in the Langevin model, it can be instructive to inspect the practical influence of
memory on the model dynamics. To this end we will now parameterize and propagate a
GLE with an exponentially decaying memory kernel K(t) = (Γ/τK)e−t/τK , see Sec. 3.3.
Γ andM are taken as averages of the rescaled dLE fields found in the last section. This
makes it possible to directly compare memory-based and Markovian Langevin dynamics.
To choose the decay time τK we can inspect the velocity autocorrelation Cv(t) since this
observable can be related to the memory kernel of a GLE model [142]. Starting at the
water time scale of approximately 10 fs [42], τK is successively increased until the GLE
simulations match the initial decay of Cv(t). Fig. 5.6 shows that τK = 30 fs represents
a good choice. GLEs with smaller decay times and especially the (Markovian) rescaled
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dLE show faster initial drops. The Cv(t) of GLEs with τK on the order of tens of fs
decay in general below zero, just as the MD, whereas the Cv(t) of the rescaled dLE
decays exponentially. Still, the MD deviates from all Langevin models for t > 50 fs, the
GLE with τK = 30 fs shows a deeper minimum than the MD, for example. Nevertheless,
overall the GLE closer resembles Cv(t) of the MD compared to the Markovian model.
Assuming that 2 · τK represents approximately the decay time of the system memory,
we note that τK = 30 fs nicely fits to our dLE observations where we found that δt ≥ 60
fs is needed to detect Markovian noise in the data.
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Figure 5.6: Velocity autocorrelation of rescaled dLE and GLE. (a) Here, we see
that GLE simulations using τK = 30 fs (cyan) reproduce the initial decay
of the MD velocity autocorrelation (black) whereas GLE simulations with
τK = 20 fs (blue) and the rescaled dLE (red) deviate. (b) Still, all Langevin
models deviate for t > 50 fs.

Considering long-time observables like τA and τD, GLE simulations predict the same
dynamics as the rescaled dLE. This makes sense considering that several orders of mag-
nitude lie between τK = 30 fs and τA, τD and remembering that already the Markovian
rescaled dLE performed well. Hence, we conclude that the explicit consideration of
short-time memory only improves the Langevin model of NaCl if short-time observables
like Cv(t) are considered.

5.1.3 Other Markovian models

Given that the two-state dynamics of NaCl are not complicated to model by some rate
matrix, it is not surprising that it is possible to construct a reasonable MSM. Using
the state definitions x ≤ 0.37 nm for the bound and x ≥ 0.6 nm for the free state,
we obviously prevent the observation of spurious, short-living transitions between the
two states, see Sec. 4.4, since they are well separated. Considering that τA and τD
are of the order of several hundreds of ps, we do not need a time resolution of the
order of fs so that it is valid to work with the 1 µs long MD trajectory which has the
minimal resolution of δt0 = 1 ps. As shown in Fig. 5.7, the implied time scale of the
two-state MSM is approximately constant which means that we can directly use the
shortest possible lag time τ = δt0 = 1 ps to produce some MCMC trajectory to test the
predictive accuracy of the MSM. As dissociation time we get τD,MSM = 129 ps and as
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association time τA,MSM = 847 ps which perfectly fits to the MD values of τD,MD = 129
ps and τA,MD = 845 ps.
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Figure 5.7: Alternative Markov modelings of NaCl. (a) The implied time scale
of an MSM for NaCl. (b) Here, we see the comparison of the rescaled dLE
friction estimate (blue) to the friction estimated by dcTMD (red) [42]. The
right figure is taken from the supplementary information of [125].

As introduced in Sec. 4.3, it is also possible to derive a Markovian Langevin model from
dissipation-corrected targeted MD simulations (dcTMD). This approach was recently
used to derive a Langevin model for NaCl [42]. While the free energy estimate of
dcTMD coincides with the dLE free energy (and by this the equilibrium MD), the
friction estimated for small x is systematically larger than the rescaled dLE estimate
[125]. This is not surprising considering that it is known that constraints increase the
effective friction of the system under study [143]. Nevertheless, we see that both friction
estimates converge approximately to the same value for larger x. It can be assumed that
the reason for the deviations at small x lies in the nontrivial breaking of the water shell
surrounding the bound NaCl system which is enforced by dcTMD when both ions are
pulled apart [42]. For large x, in contrast, the fluid dynamics are much simpler so that
constraints do not induce relevant artifacts. When integrating the Langevin equation
using the dcTMD estimate of Γ, the transition dynamics are underestimated by a factor
of 3 [125], i.e., τA and τD are too large. This makes sense since the comparatively larger
friction leads to slower dynamics so that the deviations to MD are stronger than for the
rescaled dLE which underestimates the dynamics only slightly, see Fig. 5.4.

5.2 Study of AIB9

In this section we inspect the dynamics of the small AIB9 peptide (H3C-CO-(NH-
Cα(CH3)2-CO)9-CH3). In contrast to NaCl, the system description x will be multi-
dimensional for this system, i.e., the modeling gets more complicated. Additionally, we
face the problem that the enhanced sampling MD data used as modeling input [73] is
very large so that a pre-averaging, see Sec. 4.1.5, needs to be done to be able to apply
the dLE framework. But we inspect AIB9 not only because it is more complex than
NaCl. As will be explained in the next section, unbiased (long) MD simulations [70] and
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simulations based on an alternative enhanced sampling scheme [140] provided contra-
dicting information on the nature of the most relevant conformational change of AIB9.
Hence, we can use the predictions of our models derived from the enhanced sampling
data of Biswas et al. [73] to check which one of the two perspectives is supported. But
before this investigation can be done we need to get familiar with the basic aspects of
AIB9

5.2.1 System characteristics
Although it consists of only nine residues, AIB9 exhibits nontrivial dynamics [70]. As
depicted in Fig. 5.8, the overall conformation is predominately left-handed (called L in
the following) or right-handed (called R) with transitions on a time scale of 0.1 µs. Still,
these transitions require that the individual residues do their own transition l↔r. Here, l
and r refer to the left and right-handed states of the individual residue. The observation
of individual transitions necessarily indicates that the exited states l∗ or r∗ are reached
beforehand. This dynamics occur on time scales 1 ns, i.e., are significantly faster than
L↔R. Though, the exited states are not randomly reached, certain H-bonds need to
break at time scales of 10 ps to allow for the needed changes of the dihedral angles. This
shows that AIB9 exhibits hierarchical dynamics, i.e., slow conformational changes of the
overall shape require previous changes on the level of individual residues which happen
much faster.

 

 

H Bonds break
        10 ps

transition exited state
             1 ns

L          R
   0.1μs

Figure 5.8: Time scales of AIB9. The breaking of H-bonds represents the fastest
observed time scale at 10 ps. Based on this process, it is possible that single
residues of the system reach the exited states r∗ or l∗ at time scales 1 ns.
By crossing these exited states the residue can reach the other ground state
to finish the transition l↔r. Based on these transitions of the individual
residues the whole system can change its collective conformation from state
L to state R at a time scale of 0.1 µs. The figure on the left as well as the
peptide representations on the right are taken from [70].

The reaction coordinates we are going to use were defined by Buchenberg et al [70] based
on eight 2 µs MD trajectories at a temperature of 320 K. The simulation details can be
found in Sec. A.4.2. Trajectory points were saved with a resolution of δt = 1 ps. It turned
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out that the L↔R dynamics of AIB9 are well described by the backbone dihedral angles
φi, ψi of the inner five residues, the two residues at both ends of the system exhibit mainly
fluctuations. By doing a principal component analysis with these angles (dPCA), it is
possible to further reduce the dimensionality of the final system description. It should
be emphasized that the original dPCA [144] based on the sine/cosine transformation of
the angles is applied and not the improved dPCA+ method [97] which uses directly the
angles. The first five principal components x1 to x5 (collecting 85% of the total variance)
show multipeak distributions and slowly decaying autocorrelations which indicates that
they represent a suitable system description.
After projecting the dynamics on the first two PCs, see Fig. 5.9, it becomes apparent
that x1 mainly separates the two main states L and R while x2 resolves the two main
pathways connecting them. By labeling the individual conformation of each of the inner
five residues as l or r, the intermediate states can be identified as states of the shape
"rrrll" and we see that the two pathways represent basically mirror images of each other,
in both cases the conformational change leading to L=lllll↔rrrrr=R starts at one of
the outer residues and propagates along the chain. The other combinatorily possible
intermediate states, like, e.g., rlrrr, can be found between the two main pathways in x1-
x2-projection. Although eight times 2 µs appears to be sufficient data for such a small
system, it turns out that those states are only sparsely sampled which makes it hard
to judge whether or not they contribute to relevant pathways of the transition L↔R
in converged dynamics. Additionally, as already mentioned above, an MSM pathways
analysis of short MD trajectories with implicit solvent seeded by the MELD (Modeling
Employing Limited Data) protocol [140] indicated that transitions involving those states
contribute up to ≈ 40% to the overall flux [145, 146].
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Figure 5.9: Statistics of the two MD data sets. (a) The unbiased MD data [70]
reveals two main paths for the process R↔L but the overall free energy is
only sparsely sampled. (b) The MD data based on the enhanced sampling
scheme of Biswas et al. [73] covers the conformational space significantly
more homogeneously. Note that the landscape in (b) does not represent
the free energy of the system, it only shows the sampling of the data which
consists of numerous short trajectories. The color code provides the energy
in units of kBT .

To investigate the contradiction between unbiased MD and MELD studies, a second
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data set based on the enhanced sampling scheme presented by Biswas et al. [73] was
produced. It consists of approximately 7700 short unbiased MD trajectories with in total
77.6 · 106 data points at a resolution of δt = 1 ps. Briefly summed up, the enhanced
sampling scheme constructs a rough scan of the considered free energy landscape with
metadynamics [19] followed by the generation of an extensive amount of (unbiased)
short MD trajectories starting equally distributed over the free energy landscape. The
metadynamics simulation was performed using the GROMACS program suite [17, 147]
patched with PLUMED [148]. The simulation setup of both metadynamics and the short
MD trajectories is similar to the setup used by Buchenberg et al. [70]. As ensemble,
the short trajectories aim to homogeneously sample the full conformational space of the
considered system. In case of AIB9, the short trajectories with a length of 10 ns each
indeed cover the complete energy landscape, see Fig. 5.9b. Biswas et al. [73] used Markov
state models to interpret the dynamical information of the data, we will compare the
dLE results to this analysis. We note that it is not possible to apply the conventional
dLE to the full 77.6 · 106 points due to unreasonable calculation times which means that
some pre-averaging, see Sec. 4.1.5, must be performed.

5.2.2 dLE modeling of AIB9

Still, before the pre-averaging strategy is applied to the full AIB9 data set we will first
identify a suitable modeling time step δt. As shown for the exemplary data in Sec. 4.1.2
and for NaCl in Sec. 5.1.1, dLE fields and model dynamics strongly depend on the chosen
δt. To apply the established dLE modeling steps, we use data subsets with time steps
of 2, 6, 10, 20, 50 and 100 ps which are small enough to allow for acceptable calculation
times. At δt = 10 ps, for example, we only take every tenth point and end up with
8 · 106 data points. This specific data set was also used in [73] to do the Markov state
modeling.
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Figure 5.10: Reconstructed noise for δt = 2 ps. Noise autocorrelation (a) as well as
(b) the mean (dots) and the standard deviation (lines) of the back-calculated
noise behave as expected for δt = 2 ps. The different colors represent ξ1 to
ξ5, i.e., all coordinates behave similar.

To derive a lower bound δtM for δt, i.e., to exclude non-Markovian dynamics, one can
reconstruct the noise ξ found by the dLE in the input data. Already the smallest used
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time step δt = 2 ps provides noise estimates which fulfill the expectations. Fig. 5.10
shows that the autocorrelations of all components of ξ decay in one δt and that mean
and standard deviation reproduce the expected values 0 and 1 as well.
Subsequently, similar to NaCl, the dLE performance at all selected time steps δt ≥ 2 ps
was investigated by producing for every time step ten dLE trajectories. Every dLE run
has a length of 3 · 106 frames. When inspecting the autocorrelations along the different
coordinates, see Fig. 5.11, it turns out that δt = 10 ps appears to be the best candidate
to get optimal dLE dynamics since the autocorrelation along x1 is quantitatively covered
while the other coordinates fit at least qualitatively.
This raises the question why δt = 2 ps does not provide suitable dLE dynamics. At
this point it is important to recall that the observation of Markovian noise in the data
represents a necessary but not a sufficient condition for an accurate dLE model. Some
compensation of errors might overshadow the remaining system memory at δt = 2 ps
so that the reconstructed noise appears Markovian while the overall dynamics are still
influenced by memory effects.
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Figure 5.11: dLE results for AIB9. (a) The dLE free energy (in units of kBT ) at
δt = 10 ps. (b) Here, we see the evolution of Γ11 (red) and K11 (blue) with
δt. The bottom row presents position autocorrelations along x1 (c) and x2
(d) of MD and dLEs at different δt. The MD autocorrelations are based on
the data of Biswas et al. [73].

Inspecting the friction and noise field estimates Γ and K reveals that the diagonal ele-
ments systematically increase with δt, just as we know it from NaCl. Interestingly, the
states R and L show increased fields which shows their prominent role for the dynamics
of AIB9. The off-diagonal elements oscillate around zero and are significantly smaller.
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Fig. A.2 to A.5 show the evolution of exemplary components of Γ and K. When calcu-
lating averages of the diagonal elements of Γ and K for different δt, see Fig. 5.11b, we
observe the same behavior as for NaCl, the fields grow monotonously with δt.
Since the off-diagonal elements of Γ and K are significantly smaller than the diagonal
parts it might be possible that the Langevin model does not depend on them at all. By
defining Γi,j = Ki,j = 0, ∀ i 6= j for an alternative dLE propagation, it is possible to
check this hypothesis. After using again δt = 10 ps, we see in Fig. 5.12 that diagonal
fields lead to slightly larger populations of the main states L and R compared to the
normal dLE. Still, the autocorrelations, exemplarily shown along x1, reveal that the
overall dynamics are similar to the normal dLE.
Going one step further it can be tested if it is even possible to approximate the diagonal
components of Γ and K by constant values. This can be done by calculating averages
Γ̂ii and K̂ii via extending the neighborhood average (4.10) over the full input data. In
this way we favour the field estimates in the minima over the values on the barrier which
makes sense considering that the dynamics spend most time in the minima so that the
statistical uncertainty is expected to be lower here. However, when combing Γ̂ii and K̂ii
with the (still local) estimate of the drift field f̂ , the dLE dynamics are far off and the
free energy becomes very faulty (not shown). This indicates that oscillations of the drift
field in sparsely sampled regions need to be compensated by oscillations of the other two
fields. If we constructed an analytically defined model of the free energy [45], not trivial
in five dimensions with sparsely sampled barriers, it would be highly probable that we
could find constant values for Γii and Kii leading to a reliable Langevin model. Though,
when relying on the oscillating dLE drift f̂ this is not possible.
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Figure 5.12: dLE model with diagonal Γ and K for AIB9. (a) The free energy
(in units of kBT ) of the dLE with diagonal fields emphasizes the states L
and R stronger than the normal dLE. (b) Still, the overall dynamics are
very similar as can be seen by the autocorrelation along x1 compared to the
normal dLE.

5.2.3 Binned dLE performance

Up to this point, we only used a subset of the enhanced sampling MD data for our
Langevin studies. Still, it is always preferred to use all available MD data when con-
structing a Langevin model. This will be done now by using the binned dLE introduced
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in Sec. 4.1.5.
Since we only tested the pre-averaging approach for simple model data so far, we need
to make sure that five-dimensional MD data can be treated in the same way. To do
so, it needs to be verified that the subset of 8 · 106 data points at δt = 10 ps can be
pre-averaged without harming the dLE model. By testing different sets of pre-averaging
parameters it turns out that it is possible to go down to only 0.97 · 106 input points
without effecting the dLE dynamics. The green curve Fig. 5.13b represent the autocor-
relation of the binned dLE based on this data. It nicely coincides with the result of the
normal dLE shown in red. The underlying parameters of this pre-averaging are s = 35,
Nmax = 5, ωmin = 0.0015 and ωmax = 0.015.
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Figure 5.13: Binned dLE results for AIB9. (a) The free energy (in units of kBT ) of
the binned dLE based on the maximally possible pre-averaging of the full
input data. (b) Position autocorrelations of binned dLEs based on different
pre-averagings are compared to the normal dLE (red) for x1. In green we
see the maximally possible pre-averaging of the subset of 8·106 data frames,
in blue the result when applying this setup to the full input data set and in
cyan the maximally possible pre-averaging of the full input data.

To use the full data set with a time step of 10 ps, we separate each of the 7732 short
trajectories recorded at δt0 = 1 ps into ten subtrajectories were the first subtrajectory
consists of of the points x(0 ps),x(10 ps), ..., the second of x(1 ps),x(11 ps), ... and so
on. When applying the pre-averaging setup found for 8 · 106 data points to the full data
of 77.6 · 106 data frames we get a reduction to 7.8 · 106 input points. The dynamics of a
binned dLE constructed for this data varies only slightly, see the blue curve Fig. 5.13b.
This shows that the subset of 8 · 106 data frames used to conduct the dLE studies above
already contains enough information to allow for a valid modeling.
Since this pre-averaging results in relatively many points for the full data set, additional,
more aggressive, pre-averagings were tested. It was possible to further reduce the number
of data points to 0.7·106 frames without spoiling the dLE dynamics, see the cyan trace in
Fig. 5.13c and the free energy Fig. 5.13a. The used parameters are s = 25, Nmax = 120,
ωmin = 0.0025 and ωmax = 0.025. Please note that this pre-averaging harms the dLE
dynamics when applied to the subset of 8 · 106 data frames which shows that optimal
pre-averaging parameters do not only depend on the considered system but also on the
available data set.
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To summarize the results of the detailed study of the binned dLE, it can be concluded
that the pre-averaging strategy works very well for the five-dimensional description of
AIB9, the modeling results coincide with the normal dLE. It is possible to reduce the
full data set of 80 · 106 data frames down to 0.7 · 106, i.e, the amount of data points
can be cut by a factor of 100. In addition, we have seen that the subset of 8 · 106 input
frames used to conduct the conventional dLE analysis leads approximately to the same
modeling results.

5.2.4 Rescaled dLE and comparison to Markov state model
If we inspect the free energy landscapes predicted by the dLE for δt = 10 ps a bit
closer, see Fig. 5.11 top left, it turns out that the various minima look slightly blurred.
Fortunately, the rescaled dLE can be used to construct a valid Langevin model already
at δt = 2 ps. Based on the initial decay of the autocorrelation function of the MD (not
shown), a rescaling matrix of

S = diag(1.73, 2.24, 2.24, 2, 2) (5.1)

can be determined. Using the 0.7·106 pre-averaged data points derived in the last section
as input, ten 20 µs-long dLE trajectories were produced. These simulations represent
the best dLE model we can get for AIB9. The free energy predicted by the dLE is
shown in Fig. 5.14 top left. The different minima are more constricted compared to the
dLEs at δt = 10 ps and overall the dLE free energy is very similar to the free energy
of the long MD simulations by Buchenberg et al., see Fig. 5.9. Still, we note that the
main intermediate states at the two edges, e.g., rllll or rrlll, are more populated by the
dLE than in reference MD, i.e., the enhanced sampling of the dLE input data has some
influences. The center of the free energy landscape, i.e., states like rlrrr, are in contrast
barely more populated by the dLE. Considering the dynamical predictions of the dLE
model, we see that the position autocorrelations of the MD are, by design, reproduced by
the rescaled dLE for all five coordinates, see Fig. 5.14 top right and Fig. A.6. To calculate
average waiting times, we first assign the dLE trajectories to a density-based clustering
of the MD (done by Biswas et al [73]) as described in Sec. A.8. This way we ensure
maximal comparability between the different data sets. Based on this state assignment,
Fig. 5.14 shows bottom right a selection of transitions between the ten most populated
states. dLE and MD show an average deviation of 50%. To get a quantitative impression
of the deviations between both data sets, Tab. 5.1 compares the average waiting times
of the main system transition L↔R. The reference MD samples this transition 74 times
which indicates good statistics. Interestingly, the deviation between reference MD and
dLE is larger for R→L than for L→R.
Having determined a suitable rescaling matrix S, we can now investigate the stability
of the dLE with respect to reduced input statistics. Biswas et al. found in their studies
that the Markov state model stays stable as long as ≥ 2000 short input trajectories are
used or as long as the 7732 input trajectories have a length ≥ 4 ns. By limiting the dLE
input data in the same way, two additional dLE sets were produced called "dLE short
data" (based on 7732 times ≥ 4 ns) and "dLE less data" (2000 times 10 ns). Inspecting
autocorrelations and average waiting times, we see that reduced input statistics lead to
faster dLE dynamics. This holds in particular for shorter input trajectories, here we see
a decrease of 20% in the waiting times of the L↔R transition, see Tab. 5.1.
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τL→R [ns] τR→L [ns]
MD 161± 23 80± 12
MSM 132± 0.2 67± 0.1
dLE (full data) 200± 8 140± 6
dLE (short data) 162± 6 113± 4
dLE (less data) 178± 6 132± 5

Table 5.1: Average waiting times of the L↔R transitions of Aib9. Compared are
the reference MD of Buchenberg et al. [70] to different dLE setups using the
data of Biswas et al. [73] as input data and the MSM constructed in [73]. The
three dLE models are based on the full input data, shorter input trajectories
(4 ns) or fewer input trajectories (2000), respectively. Errors are calculated
as standard deviations of the mean.
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Figure 5.14: Rescaled dLE results for AIB9 and comparison to MSM. (a) The
minima of the free energy (in units of kBT ) of the rescaled dLE are more
constricted than for the normal dLE. (b) The autocorrelations of the long
MD simulations are well covered by the rescaled dLE as we see for x1 ( )
and x2 ( ). (c) Here, we see exemplary average waiting times of MD, dLE
and MSM. (d) This panel shows the probability of pathways to use exactly
n middle states given that they reach at least one main intermediate state.
Here, time resolutions of 1 ns ( ) and 2 ps ( ) are compared.

For completeness, we can now compare the results of the dLE to the MSM model estab-
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lished by Biswas et al. [73]. Here, the subset of 8 ·106 data frames used in Sec. 5.2.2 was
projected on the first five PCs and clustered using the density-based clustering [60] with
a hypersphere radius of R = 0.2 yielding 102 states in total. The MSM was constructed
with a lag time of τ = 1 ns after inspecting the implied time scales. Based on the times
shown in Fig. 5.14c, MSM and dLE show an average deviation of 43%. Considering the
R↔L transition, Tab. 5.1, the MSM predictions deviate less from MD than the dLE,
we find only differences < 20%.

5.2.5 Comparison of dLE and MELD predictions

Having derived an optimized Langevin model via the rescaled dLE, we can now finally
come back to the question which was raised by the studies of Perez et al. [140]: does the
enhanced sampling scheme [73] used to generate our input data emphasizes the relevance
of the center of the free energy, i.e., states like rlrrr? Was the sampling of Buchenberg
et al. simply not good enough to see this relevance? Based on the free energy predicted
by the rescaled dLE, Fig. 5.14a, we can already suspect that the Markov models do not
confirm this assumption since it is very similar to the free energy of the reference MD
of Buchenberg et al. To quantify the influence of the center of the free energy, one can
isolate the L↔R pathways of reference MD, MSM and rescaled dLE and calculated the
probability Pn of pathways to use exactly n states from the center region, like for example
rlrrr, given that at least one main intermediate state, like, e.g, rrrrl, was reached. As
we see in Fig. 5.14b, reference MD and rescaled dLE predict an unimodal distribution
which peaks at n ≈ 6 if the pathways are evaluated at a resolution of δt = 2 ps. When
using 1 ns instead, the maxima are shifted to n ≈ 2.5 and coincide with the prediction of
the MSM. Hence, we can conclude that both models (which are based on the enhanced
sampling data of Biswas et al.) predict pathways which are very similar to the reference
MD. This indicates that MELD and unbiased MD lead to different dynamics of AIB9,
the former claims that states like rlrrr are very important for L↔R while the later
emphasizes the main intermediate states like rllll or lrrrr.

5.3 Summary

Inspecting the modeling of NaCl, we saw in Sec. 5.1.1 that the normal dLE could not be
applied successfully because the necessary time step was too large to allow for a sufficient
resolution of the free energy. Nevertheless, the rescaled dLE could be used to derive an
one-dimensional Langevin model based on the interionic distance x which reproduces
the MD dynamics [42] within an error of a few percent. The initial decay of the autocor-
relation function could be used to calibrate the rescaling factor S. Additionally, when
inspecting an alternative memory-based Langevin model in Sec. 5.1.2, we observed that
the consideration of memory only improves the reproduction of short-time dynamics.
Considering that it is known that the hydration shell dynamics are very important for
NaCl [141], the excellent performance of a Markovian model is remarkable. We addi-
tionally observed in Sec. 5.1.3 that the rescaled dLE is not the only possibility to derive
such a model, an MSM or a dcTMD-based Langevin model can be used as well.
Subsequently, we constructed a five-dimensional model of the dynamics of Aib9 based
on a large enhanced sampling data set [73] consisting of numerous short trajectories.
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Considering a subset of the data, we determined a suitable dLE time step in Sec. 5.2.2
and tested carefully that the pre-averaging (needed to apply the binned dLE to the
full data) did not harm the model dynamics in Sec. 5.2.3. The number of data points
could be reduced by a factor of 101 which shows that the binned dLE approach is very
effective. Applying the rescaled dLE in Sec. 5.2.4, we were able to refine the Markovian
Langevin model. Based on this optimization, we investigated the convergence behavior
of the dLE with respect to number and length of the input trajectories. It was observed
that the dLE frameworks tends to predict faster dynamics if the input trajectories are
shorter or less numerous. When comparing the Langevin model predictions to those of
an MSM constructed by Biswas et al. [73], we saw that both model frameworks pre-
dicted qualitatively the same dynamics. Compared to an alternative MSM based on the
MELD (Modeling Employing Limited Data) protocol [140], we observed that Markovian
models based on the data of Biswas et al. predict dynamics which emphasize the impor-
tance of the intermediate states at the "edges" of the free energy (like lrrrr) for the L↔R
transition. This coincides with the results of long unbiased MD simulations performed
by Buchenberg et al. [70]. MELD, in contrast, emphasizes the importance of states in
the "center" of the free energy (like rlrrr).
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"One does not simply walk into Mordor!"
– Boromir, "Lord of the Rings:

The Fellowship of the Ring"
(movie by Peter Jackson)

Although it is instructive to inspect small systems like NaCl and AIB9 to test the virtues
and shortcomings of the Markovian modeling framework, we are eventually aiming for
the modeling of more complicated dynamics where some simplified model is fundamen-
tally needed to even have the chance to understand the system. Additionally, some
model might be needed to predict system dynamics which are out of reach of MD simu-
lations. Going in this direction, we will inspect the 164-residue T4 lysozyme in the first
part of this chapter. Performing a prominent open↔closed transition on time scales
of microseconds, the appropriate dimensionality reduction for T4 lysozyme is currently
unclear. While not being able to solve this problem in this thesis, we will see how
Markovian modeling can help to evaluate the informative value and completeness of
low-dimensional system descriptions. First, we will inspect a set of coordinates based
on a contact principal component analysis [71] which have been problematic for earlier
Langevin-based studies of T4 lysozyme [149]. Here, we will try to understand the prob-
lems of this system description. Going further, we use Markov state models to inspect a
two-dimensional system description derived earlier [71, 150] before we inspect the influ-
ence of additional coordinates on the accuracy of the MSM. Afterwards, the performance
of the dLE framework for the two-dimensional system description is evaluated. We will
have to use the rescaled dLE to derive a reasonable model which covers the long time
scales based on a small time step.
Moreover, we will inspect even slower dynamics in the last section of this chapter. Con-
sidering the unbinding of benzamidine from trypsin and the unbinding of a resorcinol
scaffold-based inhibitor from the N-terminal domain of heat shock protein 90 (Hsp90),
it will be shown that dcTMD-based Langevin models are able to correctly predict time
scales on the order of millisecond (trypsin) to half a minute (Hsp90) within a factor of
ten [125]. At this point we have to use T-boosting (Sec. 3.4) to sufficiently accelerate
the Langevin simulations.

6.1 Study of T4 lysozyme

In this section we will inspect the dynamics of bacteriophage T4 lysozyme (T4L) [151].
Lysozymes are a group of enzymes which can be found in animals, humans, plants,
bacteria and viruses. For humans and animals they are part of the innate immune
system and serve as defence against bacteria. Other organisms utilize it against bacteria
as well, e.g., viruses use it to penetrate bacteria membranes. The first enzyme analyzed
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by a complete X-ray crystallography was hen egg lysozyme. This system was also the first
enzyme for which a detailed mechanism of action was proposed [152]. In the following
we will test the performance of the Markov state as well as the Langevin model for T4L.

6.1.1 System characteristics

The 164-residue T4L consists of two domains, see Fig. 6.1a, which perform a distinctive
hinge-bending motion. This dynamics resembles the opening and closing of the mouth
of a "Pac-Man" [153] when imagining that the two domains represent the upper and the
lower jaw, respectively.

x1 x2

t

x1
x2x2

x1

helix 1

N-terminus

a
b

Figure 6.1: Structure of T4 lysozyme and MD trajectory. (a) A cartoon rep-
resentation of the open (orange) and the closed (blue) state of T4L. The
coordinate x1 directly records the opening and locking while x2 measures
the dynamics of the Phe4 side chain (see text). (b) This panel shows the
time evolution of x1 and x2 in fully atomistic MD simulations.

As model input we will use a 61 µs-long unbiased all-atom MD simulation at 300 K
produced by Ernst et al. [71]. Details on the MD setup can be found in Sec. A.4.3. By
closely inspecting the MD dynamics, Ernst et al. [71, 150] discovered that the transition
between the open and the closed state of T4L is caused by a locking mechanism where the
side chain of Phe4 moves from a solvent-exposed to a buried state (Phe4 is highlighted
in Fig. 6.5). This observation motivates a two-dimensional system description of T4L.
The first coordinate x1 covers the transition between the open and the closed state and
was defined by a contact-PCA based on the residues 20, 21, 22, 137, 141 and 142 of the
N- and C-terminal domains. The second coordinate x2 records the side chain motion of
Phe4. It represents the scalar product of two distance vectors which monitor the side
chain dynamics.
The first 20 µs MD simulation resolved along x1 and x2 can be seen in Fig. 6.1b. We see
that transitions between open and closed are only rarely observed, the system remains in
one of the two distinct conformations for several µs. Moreover, the transitions themselves
take only a few ns (at least in this system description) which is surprisingly fast. This
shows that the transition dynamics of T4L include information on several time scales

82



6 Markov modeling of slow dynamics

from very long to rather short which indicates that it will be very challenging to derive
a satisfying Markovian model, may it be a Markov state or a Langevin model.

6.1.2 Recrossing study

Still, before we consider T4L in terms of the coordinates x1 and x2, we go one step back
and connect to earlier dLE studies [149]. Here, the first three principal components (PCs)
y1, y2 and y3 of a contact principal component analysis were used as system coordinates
[71]. The first PC y1 describes the opening and locking motion of the whole complex. It
is dominated by two contacts acting as hinges at the N- and C-terminal domains. The
second PC y2 represents a twist-like rearrangement in the N-terminal domain while the
third PC y3 describes a rocking motion of helix 1 and the N-terminal domain (in Fig.
6.1 helix 1 and the N-terminus are marked). The free energy projected on y1, y2 and
y3 (see Fig. 6.2) reveals five relevant states in the form of energy minima[71, 149]. The
states 1 and 2 account for the main open and closed conformation, respectively. The
other three minima represent side states resolved along y2 and y3.
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Figure 6.2: Recrossing study based on contact distance. (a) Here, we see the free
energy projected on the first two PCs y1 and y2. The other three figures are
related to the counting of recrossings. In (b), the state cores are shown, in
(c) the state surroundings and in (d) the barrier region.

The free energy projection on y1 and y2 as well as the position of the states can be seen
in Fig. 6.2a and b. Similar representations for the other projections can be found in Sec.
A.10. We found that the dLE needs a time step of δt = 5 ns to become slow enough
to account for the MD dynamics described by the three PCs [149]. This is problematic
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considering that, just as for the system description x1, x2, the actual transitions ob-
served in MD have a duration of only a few ns, i.e., the dLE is not able to resolve them
in detail. This observation motivated the conclusion that y1, y2 and y3 are not suited to
cover all essential dynamics of the system.
Now, we will find additional evidences for this assumption. Transition state theory tells
that insufficient system descriptions can be detected by counting the number of barrier
crossings observed during individual transitions [141, 154]. For ideal reaction coordi-
nates, which allow for a Markovian model of the system dynamics, the barrier is crossed
only a single time per transition. Suboptimal coordinates, i.e., coordinates which do
not cover all important motions, show oscillations on the barrier in contrast. These
oscillations can be explained by hidden coordinates which perform their own nontrivial
motions and need to have a specific configuration to allow for successful transitions, i.e.,
the hidden coordinates give rise to system memory. Hence, if the hidden coordinates do
not allow the transition, the trajectory will not reach the minimum of the target state
and it will probably jump back over the barrier.
Now, let us see how T4L behaves. To count the barrier crossings we need to define the
states and the barrier. State cores are defined by spheres in the three-dimensional space
spanned by y1, y2 and y3 as indicated in Fig. 6.2b. The barrier regions are specified by
cubes located at the free energy maxima, see Fig. 6.2d. The remaining trajectory points
are interpreted as surrounding area of the nearest state core, i.e., neither as state core
nor as barrier. A transition is assumed to start once the present state core has been
left. Reaching any other state core indicates its end. For the time in between start and
end of the individual transition, one counts how often the state surrounding is changed.
This allows to map the transition to a sequence like, e.g., 1→2→1→2 which indicates
that the barrier was crossed three times.
Applying this procedure to the MD and a dLE with δt = 100 ps (this time step is also
used to evaluate the crossings), revealed significant discrepancies between both data
sets. Especially the main transition 1↔2 (representing the transition between open and
closed conformation) deviates significantly. While the dLE shows approximately only
one barrier crossing per transition, just as expected for Markovian dynamics, the MD
reveals roughly 2.5 crossings. This can be seen as proof that the coordinates y1, y2, y3
indeed miss some important dynamics. When inspecting dLE and MD at a resolution
of δt = 5 ns the discrepancies vanish, both data sets cross the barrier only a single time
per transition. However, this is not surprising since the details of the MD transitions
are no longer resolved anyway.
In summary, counting of barrier crossings underpins the conclusion that the three co-
ordinates y1, y2 and y3 are not well suited to derive a satisfactory Markovian model.
Considering that x1 and x2 are directly correlated to the opening and closing of T4L, it
is likely that they will provide a more favourable system description.

6.1.3 Two-dimensional Markov state model

To evaluate if x1 and x2 allow for the derivation of more meaningful Markovian models,
we will directly inspect the results of an MSM constructed for this set of coordinates.
Inspecting the free energy resolved along x1 and x2, see Fig. 6.3a, reveals four minima,
i.e., four metastable states [71]. State 1 represents the open/buried state while state 2
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depicts the attempt of the system to close the mouth even though Phe4 is still buried.
In state 3, Phe4 starts to be exposed to the solvent. State 4 is finally the closed/solvent
exposed conformation. We note that state 1 and 4 are significantly more populated than
the other two states, reflecting that the latter two can be interpreted as transition states.
To identify the state borders we can use a density-based clustering [60] of the data. By
setting the hypersphere radius to the lumping radius and by using a minimal popula-
tion of pmin = 2000 (see [60] for details on the interpretation of these parameters) the
density-based clustering finds a reasonable discretization into the expected four states.
We note that the states 3 and 4 are merged for larger pmin, which reflects that they are
separated by a low barrier. The density-based clustering defines populations of 69 % for
state 1, 1.2 % for state 2, 2.3 % for state 3 and 28 % for state 4.
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Figure 6.3: Two-dimensional Markov state model for T4 lysozyme. (a) The free
energy (in units of kBT ) reveals four states (white numbers). The black line
represents an exemplary 1→4 (open→closed) transition found in the MD
simulation. (b) The implied time scales t1, t2 and t3 of an MSM indicate
that lag times τ ≥ 5 ns are needed to derive a valid MSM for the uncored
data (black). After dynamical coring (red) the initial steep rise of the time
scales disappears. Note that the two smaller time scales overlap after coring.
In the bottom row we see illustrations of the transition matrix of the four-
state splitting. The numbers at the arrows (connecting the states) indicate
the probabilities to observe the transitions i→j within δt = 10 ps (c) and
δt = 5 ns (d) when starting in state i.
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The black line drawn in Fig. 6.3a represents a typical open → closed transition of the
MD with a length of 4.4 ns. We see that it follows the path 1→2→3→4. Counting all
transitions between the different states at a resolution of δt = 10 ps (see the graphical
representation Fig. 6.3c) reveals frequent oscillations between states 1 and 2 as well
as between states 3 and 4. Besides one direct 1→4 jump, all open → closed pathways
include the states 2 and 3. The same holds true in the opposite direction. Unfortunately,
the essential transition 2↔3 needed to perform the open↔ closed transition occurs on a
similar time scale as the mostly unproductive oscillations 1↔2 and 3↔4, i.e., failed and
successful opening/closing attempts are not dynamically separated. Alternatively, when
recalling the recrossings observed for y1, y2 and y3 in Sec. 6.1.2, one might interpret
the frequent oscillations 1↔2 and 3↔4 as symptom of similar problems. Either way,
our observations indicate that it could be problematic to describe the open↔closed
mechanism by Markovian dynamics.
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Figure 6.4: Results of the two-dimensional Markov state model. (a) Here, we
see the average waiting times of MD (black), cored MD (red), the MSM
on the uncored MD (blue) and the MSM on the cored data (green). Error
bars are calculated as standard deviations of the mean. (b) The population
probabilities Pstay before (lines) and after (dots) coring. Black represents
state 1, cyan state 2, blue state 3 and green state 4.

Indeed, when calculating the implied time scales of a four-state MSM, we see in Fig.
6.3b that lag times τlag ≥ 5 ns are necessary to observe approximately constant time
scales. This implies that it is not possible to cover the transition events with a duration
of the order of nanoseconds by means of the MSM framework. As a consequence, the
transition network at δt = 5 ns shown in Fig. 6.3d, suggests that all four states are well
connected. The open↔closed transition is dominated by direct 1↔4 jumps, i.e., the
importance of the intermediate states 2 and 3 is hidden. Hence, while the MSM with
τlag produces satisfactory average waiting times (see Fig. 6.4a) its interpretation of the
T4L dynamics is misleading.
Considering that density-based clustering separates the states on top of the barrier, it is
reasonable to suspect that wrongly assigned points on the barrier might disguise the true
transition dynamics. Intrastate dynamics are maybe mistaken as interstate transitions,
which leads to fast initial decays of the probability Pstay,n(t) to stay in state n for at least
the time t (see Sec. 3.1). When calculating Pstay,n(t) for T4L (see Fig. 6.4b) we indeed
observe such fast initial decays. Dynamical coring (see Sec. 2.6) can be used to remove
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those artifacts [65, 66]. To remove the initial decays of Pstay,n(t), we need coring times
τcor,1 = τcor,4 = 200 ps for the states 1 and 4, τcor,2 = 500 ps for state 2, and τcor,3 = 800
ps for state 3, see Fig. 6.4b. When calculating the implied time scales based on the
cored data, see Fig. 6.3b, we see that the initial steep rise was removed. The average
waiting times of the most important transition 1↔4 found in MD is hardly influenced by
the coring, see Fig. 6.4a, which indicates that coring does not affect the most important
part of the dynamics. Still, the average waiting times of the transitions 1↔3, 4→3 and
2↔3 are significantly altered. Note that all those transitions include state 3. When
counting all transitions observed in the cored data at δt = 10 ps, it turns out that state
3 only jumps to state 4, while all other states are interconnected. Even when counting
the transitions at a resolution of δt = 5 ns, we do not observe a single 3→2 transition,
and the 2→3 direction has the lowest count of all transitions. Hence, dynamical coring
does not only remove short-living oscillations on top of the barrier but deletes the whole
1↔2↔3↔4 pathway. This shows that it is indeed not possible to combine this pathway
with the fast oscillations 1↔2 and 3↔4 in the same MSM.
Still, when constructing an MSM with τlag = 5 ns based on the cored data, the resulting
average waiting times (see Fig. 6.4a) coincide with the MD data somewhat better than
before coring. We can conclude that coring indeed improves the state definition from
perspective of the MSM but removes at the same time important dynamical information.
After all, while it is possible to reproduce the 1↔4 time scale by an MSM, the system
description of T4L needs to be improved if we want a model which accounts for details
of the open↔closed transition, i.e., the pathways.

6.1.4 Four-dimensional Markov state model

To enhance the system description of T4L, it can help to add additional coordinates so
that newly resolved side states make the pathways more detailed and by this (hopefully)
more suitable to be modeled by an MSM with a small lag time. Considering T4L, many
different coordinate candidates were tested, but the constructed Markov state models
did not allow to use of smaller lag time τ to cover the open↔closed pathways. To
investigate the persistent problems of all tested system descriptions, we will now inspect
one exemplary extended coordinate set.
Here, two additional coordinates are added. The first degree of freedom x3 represents
the distance between the carboxylate carbon atom of Glu5 and the ammonium nitrogen
atom of Lys60, see Fig. 6.5a. These two atoms can form a salt bridge. x3 might be
interesting because the MD data showed that the salt bridge seals Phe4 in its buried
cavity, i.e, x3 needs to extend before Phe4 is able to switch its conformation to trigger
the open→closed transition. In consequence, as can be seen in Fig. 6.6a, x3 splits state
1 into three substates. The narrow state at x3 ≈ 0.3 represents the most stable open
conformation where x3 is so small that Phe4 is basically trapped. The attached, slightly
broader, minimum at x3 ≈ 0.55 refers to the first step of the extension of x3 where the
salt bridge becomes unstable but Phe4 is still not able to switch. Only at the third
substate centered at x ≈ 0.8 (where the salt bridge is broken) is directly connected
to the closed system configuration. This explains the broad arc that is spanned from
the open to the closed state. However, although x3 adds more details to the closing
process, it needs to be noted that the transitions along x3 is relatively fast (on the
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order of nanoseconds) so that we do not add an additional slow time scale to the system
description, i.e., the open↔closed pathways are still fast.

x3

Phe4

x4

Phe4

a b

Figure 6.5: Additional coordinates for T4 lysozyme. (a) We see an overlay of the
cartoon representations of the states 1A (cyan) and 1B (red-white). The
coordinate x3 is indicated by a black arrow, Phe4 is highlighted by a circle
and Glu5 as well as Lys60 are shown as red sticks. (b) This panel shows
an overlay of the cartoon representations of the states 4A (cyan) and 4B
(blue-white). Again, Phe4 is highlighted and the coordinate x4 is indicated.
Leu7 and Gly12 are shown as blue sticks.

The second additional coordinate x4 represents the distance between the backbone oxy-
gen of Leu7 and the backbone nitrogen of Gly12, see Fig. 6.5b. Being the counterpart
of x3, it splits state 4 into substates, see Fig. 6.6b. When inspecting the MD trajectory
in detail, it turns out that large x4 indicate a stable closed conformationwhile small x4
refer to a more unstable one.
A density-based clustering in the extended four-dimensional system space and subse-
quent manual state lumping leads to a simple and reasonable state separation: while
the states 2 and 3 remain approximately unchanged, both large states 1 and 4 are split
into two substates. Called 1A, 1B and 4A, 4B, the respective state populations are
evenly shared. State 1A contains a population of 34 %, 1B collects 35 % of all data
points while state 4A and 4B show populations of 14 % each. The states 1A and 4A
can be interpreted as unstable system conformations while 1B and 4B describe stable
states. An illustration of the overall state separation can be seen in Fig. 6.6c. Although
this extended state space looks promising, the resulting MSM modeling does not re-
veal improvements compared to the MSM based on x1 and x2 alone. The implied time
scales (see 6.6e) show again a steep initial rise which needs (for the larger time scales)
approximately 5 ns to reach a plateau, i.e., the required lag time is not reduced. When
inspecting the probabilities Pstay,n(t) to stay in state n for at least the time t, on the
other hand, we see that dynamical coring is needed to improve the state definition (see
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Figure 6.6: Four-dimensional Markov state model for T4 lysozyme. The free
energy (in units of kBT ) projected on x1, x3 (a) and projected on x1, x4
(b) reveals that state 1 and 4 are split (white numbers) when including the
coordinates x3 and x4. Please note that 1B includes two minima due to the
manual state lumping used to simplify the state separation. (c) Here, we see
an illustration of the overall state splitting. (d) The average waiting times
of MD (black), cored MD (red), the MSM on the uncored MD (blue) and
the MSM on the cored data (green). Error bars are calculated as standard
deviations of the mean. (e) The implied time scales t1, t2 and t3 of an MSM,
indicate again that lag times τ ≥ 5 ns are needed to derive a valid MSM for
the uncored data (black). After dynamical coring (red) the initial steep rise
of the time scales disappears. (f) Here, we see the population probabilities
Pstay before (lines) and after (dots) coring. The different colors represent the
six states.
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6.6f). Still, we need again coring times on the order of 100 to 500 ps to remove the
fast initial decay which is, again, similar to the observations for the two-dimensional
system description. Consequently, it is possible to use an MSM with τ = 5 ns to predict
approximately correct average waiting times, see Fig. 6.6d, but the transition pathways
itself are, again, not resolved.
Hence, x3 and x4 do not improve the capabilities of our T4L models. While there are
numerous other coordinates which look just as promising as the two coordinates x3 and
x4, this problem is very persistent. It is reasonable to speculate that this phenomenon
is caused by a missing time scale separation between relevant and irrelevant system dy-
namics which makes the dimensionality reduction very complicated. Just because some
motion appears to encode relevant side states of the open or the closed state, it is not
clear that this motion is causally related to the open→closed transition. Additionally,
it might be possible that system descriptions are needed which describe T4L more ab-
stract than the simple distances which were used in this chapter. Maybe coordinates are
needed which quantify, e.g., the disorder of or the structural stress at important regions
of T4L. Still, these considerations are mere speculation at this point, future studies are
needed to inspect their plausibility.

6.1.5 Two-dimensional dLE modeling

Having seen that the capabilities of MSMs to cover the dynamics of T4L are limited,
we will now inspect the performance of the dLE at this point. Since the additional
coordinates x3 and x4 did not improve the modeling situation significantly, we go back
to the two-dimensional system description. As written in Sec. 6.1.2, it is known that
δt = 5 ns is needed for sufficiently slow model dynamics when using the first three PCs
of a contact-PCA [149]. Based on the MSM results presented above it is very likely that
we obtain the same result for the coordinates x1 and x2 but we can fall back on the
rescaled dLE to get at least an approximately consistent Langevin model at small δt.
But first we consider the normal dLE procedure, i.e., we adjust the time step δt such that
δtM < δt < δtR. The noise estimated by the dLE model for different δt, see Fig. 6.7c,
reveals that already δt = 10 ps appears to be sufficient to observe Markovian noise. The
free energy estimated at this time step (Fig. 6.7a) accurately reproduces the MD but the
dLE dynamics are too fast as can be seen by inspecting the position autocorrelations in
Fig. 6.8. This confirms that the two-dimensional system description apparently misses
important dynamics of T4L, i.e., the conclusions from the MSM modeling are confirmed.
Still, it is worth noting that the dLE successfully reproduces the velocity autocorrelation
of the data at δt = 10 ps, i.e., good agreement for the velocity cannot be transferred
to good accordance in the coordinate itself. Successively increasing δt confirms the
suspicion that, just as for the coordinate description based on contact-PCA or for the
MSM above, a time step of δt = 5 ns is needed to get sufficiently slow dLE dynamics,
see the autocorrelations in Fig. 6.8. Unfortunately, this δt it too large to allow for the
reproduction of the free energy, see Fig. 6.7b. It appears as if the dLE only observes
two-state dynamics between the states 1 and 4 and overlooks the two intermediate states.
When remembering that the 1↔4 pathways are typically shorter than 5 ns, this effect
is perfectly reasonable.
To circumvent the problems of the dLE, we can use the rescaled dLE to construct a
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reasonable dLE model for δt = 10 ps. Using the initial decay of the autocorrelations
along the two coordinates (Fig. 6.8c and d), a rescaling factor of S = 5 · 1 was deduced.
Similar to NaCl and AIB9, the full decay of the autocorrelations is covered although we
only use the first 100 ns to determine S. The free energy landscape of the rescaled dLE,
Fig. 6.9a, reproduces the MD, just as expected at δt = 10 ps. When considering the
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Figure 6.7: Two-dimensional dLE modeling for T4 lysozyme. In the top row we
see the free energies of dLEs at δt = 10 ps (a) and δt = 5 ns (b) in units
of kBT . (c) Here, the autocorrelation of the reconstructed noise at different
time steps is shown. (d) The velocity autocorrelations of MD and dLEs
(considering x1).

average waiting times of the rescaled dLE trajectory (see Fig. 6.9b), we see that the
transitions 1↔4 are accurate which makes sense considering that those dynamics, being
the slowest transitions, dominate the autocorrelations we use to choose S. The other
waiting times, in contrast, are only qualitatively covered. The transitions 1↔2 and
4↔3, for example, are estimated too slow. This observation can be understood by
comparing transitions of MD and rescaled dLE, see Fig. 6.3b and Fig. 6.9a. While the
MD shows numerous short-living 1↔2 and 3↔4 jumps before the transition is finished,
the rescaled dLE evolves less dynamical (which makes sense considering that we increased
the friction) and performs the transition more directly, i.e., the 1↔2 and 3↔4 oscillations
are suppressed. This shows that we can interpret the oscillations 1↔2 and 3↔4 as
recrossings which cannot be covered by Markovian models, i.e., there are most likely
hidden degrees of freedom. In consequence, the rescaled dLE has to sacrifice some
short-living dynamics (like the velocity autocorrelation shown in Fig. 6.7d) to cover
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the longer time scales. When considering the estimated Langevin fields Γ and K, we
observe that the diagonal components Γnn and Knn mainly depend on the coordinate
xn while the dependence on the other coordinate turns out to be only minor (see Sec.
A.12). Additionally, the off-diagonal elements are comparatively small, i.e., it appears
to be sufficient to approximate Γ and K by diagonal matrices with Γ11(x1), Γ22(x2) and
K11(x1), K22(x2), respectively. When simulating Langevin dynamics based on such a
simplified model, it turns that it is even possible to drop the coordinate dependence of
both fields completely by replacing the matrix elements by averaged values. As can be
seen in Fig. 6.9b, the resulting Langevin dynamics produce very similar average waiting
times. While especially 1→4 is better with the untouched rescaled dLE estimates, the
simplified model is still qualitatively correct even though the field estimates vary by
a factor of 10 or more. Thus, it is not necessary to have a very detailed model of
friction and noise since the results of the Langevin model are relatively unaffected by
this modeling aspect.
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Figure 6.8: Autocorrelations of MD and dLEs for T4 lysozyme. The panels (a,c)
show the x1 autocorrelations of MD (black), normal dLEs at different time
steps (red, blue, green, cyan) and the rescaled dLE at δt = 10 ps with
S2 = 25. The panels (b,d) show the same for x2. In the top row, we can
see the full decay of the autocorrelations, the rescaled dLE and the normal
dLE at δt = 5 ns follow the decay at least qualitatively. The bottom row
shows that it is sufficient to consider the first 100 ns of the autocorrelations
to calibrate the rescaling matrix S.
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For completeness we can investigate the influence of the additional coordinates used for
MSMs in Sec. 6.1.4 on the capabilities of the dLE. Similar to the MSM framework, it
can be observed that the resulting Langevin models do not benefit from the additional
degrees of freedom. It is not possible to use δt < 5 ns for sufficiently slow (unrescaled)
dLE trajectories, i.e., the friction needs to be rescaled again if we want to get the long
time scales at small δt.
In summary, we can conclude that it is possible to construct a (rescaled) dLE model
which is able to cover the long-time dynamics of T4L represented by x1 and x2. Addi-
tional coordinates do not improve the dLE performance. While short time scales need
to be sacrificed, it is possible to drastically simplify friction and noise without losing
the qualitative accuracy of the Langevin model. This shows that surprisingly simple
Langevin models are able to cover the most important dynamics of T4L.
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Figure 6.9: Results of the rescaled dLE for T4 lysozyme. (a) The free energy (in
units of kBT ) estimated by the rescaled dLE together with an exemplary 1→4
pathway. (b) The average waiting times of the rescaled dLE are compared to
MD and a simplified Markovian Langevin model with constant and diagonal
friction and noise (see text).

6.2 Langevin modeling of multisecond dynamics

As explained in Sec. 4.3, dissipation-corrected targeted MD (dcTMD) allows for the
parameterization of a one-dimensional Langevin model by enforcing the transition of
interest along x via the constraint force fc. Together with T-boosting, see Sec. 3.4, this
makes it possible to access time scales of the order of tens of seconds. In the following,
we will have a look at the results of the modeling of the dynamics of two protein-ligand
complexes, trypsin-benzamidine and the N-terminal domain of a heat shock protein 90
inhibitor complex [125].
The unbinding of the inhibitor benzamidine from trypsin [155–157] is frequently used
to test enhanced sampling techniques [139, 143, 158–161] due to its slow unbinding dy-
namics occurring on time scales of milliseconds [155]. The other considered process,
the unbinding of a resorcinol scaffold-based inhibitor (1j in [162]) from the N-terminal
domain of heat shock protein 90 (Hsp90) even shows time scales of half a minute. It
has recently been established to investigate molecular effects influencing binding kinetics
[162–165]. To parameterize Markovian Langevin models for both systems, TMD simu-
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lations were performed, the data set of trypsin consists of 200 trajectories, Hsp90 was
sampled by 400 runs. At the start of each simulation, peptide and ligand were prepared
in the bound state, the subsequent TMD run enforced the dissociation by increasing the
distance x between benzamidine/inhibitor and the binding site. The details of the MD
setups for both systems can be found in Sec. A.4.4.
Using nonequilibrium principal component analysis [138], the dominant transition path-
way of trypsin was determined. This pathway is used by 84 trajectories in total. For
Hsp90, on the other hand, a path separation based on geometric distances between indi-
vidual trajectories was performed [166], see also the Supplementary information of [125]
for more details. Here, the dominant pathway is used by 93 trajectories. Employing the
dcTMD equations from Sec. 4.3, free energy and friction estimates where calculated using
these two trajectory sets. As can be seen in Fig. 6.10a, both systems show very similar
free energy profiles. The bound state at x = 0 is followed by a single high barrier which
peaks at x ≈ 0.46 nm (trypsin) and x ≈ 0.5 nm (Hsp90), respectively. Having passed
this barrier, the dissociated state at x ≥ 0.75 nm is reached. Interestingly, the single
free energy barrier can be associated with very distinct dynamics for both systems. In
case of trypsin, it reflects in line with [139] the breaking of the Asp189-benzamidine salt
bridge representing the most important contact of the bound ligand. In case of Hsp90,
on the other hand, the ligand is pushed between two helices to escape the binding site.
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Figure 6.10: dcTMD-based Langevin fields for trypsin and Hsp90. (a) Here, we
see the free energy estimate F (x) of trypsin (cyan) and Hsp90 (black). (b)
This panel shows the friction Γ estimated by dcTMD.

When considering the two friction profiles (see Fig. 6.10b), we find the maxima directly
behind the peaks of the free energy, i.e., both systems are again very similar. The local
increase in friction can be related to rearrangements of the protein-ligand hydration
shells [125].
To complete the Langevin model we need to choose suitable massesM for both systems
since dcTMD does not provide any direct estimates at this point. Fortunately, the
two friction profiles indicate overdamped Langevin dynamics at the main barrier which
would mean that the mass does not influence the transition dynamics since it does not
show up in the overdamped Langevin equation (3.30). Langevin calculations using the
reduced masses of trypsin-benzamidine (M = 120.15 g/mol) and Hsp90 (M = 288.73
g/mol) as well as ten times larger masses show indeed that this suspicion is true (see
Supplementary information of [125]). Hence, we can safely use the reduced masses for
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our Markovian Langevin model. Please note that we stick to the Markovian Langevin
equation and do not switch to the (faster) integration of the overdamped version (3.30).
Using the overdamped equation, we observed artifacts in the simulated free energy at
larger x where Γ becomes small (for example at x = 1 nm for trypsin) and the system
behaves no longer overdamped. Hence, we concluded that it is safer to use the non-
overdamped Langevin equation although the transition statistics might be unaffected by
these artifacts.
To estimate the binding and unbinding times, Langevin simulations using the OVRVO
integrator from Sec. 3.3.2 were performed. Since the times should be of the order of
milliseconds (trypsin) or even tens of seconds (Hsp90), it is necessary to use T-boosting
(see Sec. 3.4) in order to collect enough transition statistics. Thus, 10 ms-long Langevin
trajectories were produced for trypsin covering 13 temperatures ranging form 380 K to
900 K. For Hsp90, the simulations have a length of 5 ms and span a temperature range
of 700 K to 1350 K. In both cases at least 102 binding/unbinding events are recorded
at the different temperatures. To account for the fact that the free energies are only
defined for x ∈ [0, 2] nm, fully reflective boundary conditions were implemented, i.e.,
once the trajectory jumped over one of the two borders xmin, xmax by the distance a it
was set back to x = xmax − a, x = xmin + a and the velocity was multiplied by −1.
To calculate the waiting times of interest, the bound state was set to x < 0.3 nm for
both systems while the unbound state was defined by x > 0.6 nm (trypsin) and x > 0.9
nm (Hsp90), respectively. As can be seen in Fig. 6.11, the evolution of the average
waiting times perfectly coincides with the expected Kramers relation (3.43) so that we
can estimate binding/unbinding rates of kbind = 8.7 · 106 s−1M−1, kunbind = 2.7 · 102

s−1 (trypsin) and kbind = 9.0 · 104 s−1M−1, kunbind = 1.6 · 10−3 s−1 (Hsp90) at the
target temperature T = 290.15 K. Please note the native units s−1M−1 of the binding
rates, it is assumed that both protein-ligand systems have a molarity of 50 mM (see the
Supplementary Information of [125]).

τ τ

trypsin Hsp90

a b

Figure 6.11: Langevin predictions of binding and unbinding times. Average bind-
ing (red) and unbinding (blue) times calculated from T-boosted Langevin
simulations. Panel (a) presents trypsin and panel (b) shows Hsp90. The
black dots represent experimental values taken from [155] (trypsin) and
[163] (Hsp90).

When comparing these rates to experimental values, kbind = 2.9 · 107 s−1M−1, kunbind =
6.0 · 102 s−1 [155] for trypsin and kbind = 4.8 · 105 s−1M−1, kunbind = 3.4 · 10−2 s−1
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[163] for Hsp90, it turns out that we underestimate the true rates by a factor of 2−3 for
trypsin while the Hsp90 predictions deviate by factors of 5 (binding) and 20 (unbinding).
Considering the fact that the errors caused by the T-boosting approach are marginal (see
Sec. A.5) the deviations can be explained by limitations of the Langevin framework as
well as the approximate calculation of free energy and friction by dcTMD. It is known,
for example, that constraints lead in general to an overestimation of the friction [143].
The larger error of Hsp90 compared to trypsin is likely related to issues with the sampling
of the correct unbinding pathway. Considering that the unbinding time scale of tens of
seconds coincides with the slow conformational dynamics of host proteins [163], it can
be assumed that the conformational space of the Hsp90 dynamics is significantly larger
than the space of trypsin so that it would need a better sampling by significantly more
TMD simulations to yield better predictions of free energy and friction. Still, it is worth
noting that the deviations of our dcTMD-based Langevin model compete quite well with
other computational methods, see [167] for a collection of modeling results for trypsin.
Considering the Kramers relation Eq. 3.43, we see that an error of the rates on the order
of ten can be related to an error of the energy barrier on the order of only 2.3kBT (due
to e2.3 ≈ 10) which is not much for the extremely long time scales of trypsin and Hsp90.

6.3 Summary
Considering the dynamics of T4 lysozyme, we have seen in Sec. 6.1.2 that coordi-
nates based on a contact principal component analysis reveal barrier recrossings for the
open↔closed transition. Since recrossings impede the Markovian system description,
this observation explains why earlier Langevin studies did not provide accurate models
at small time resolutions. Going further, we inspected in Sec. 6.1.3 the capabilities of an
MSM to describe the dynamics for a two-dimensional system description derived earlier
[71, 150]. While the MSM could reproduce the time scale of the open↔closed transition,
it was not possible to account for the (relatively short) transition pathways since the
lag time was too large to resolve them. Adding additional coordinates in Sec. 6.1.4 did
not improve the capabilities of the Markov state model. Hence, Sec. 6.1.5 inspected
the performance of the dLE framework only for the two-dimensional system description.
The rescaled dLE was able to provide a Markovian Langevin model which reproduced
the long time scales based on a small time step. Although we were able to simulate
Langevin trajectories which resemble the MD simulation in the sense that they follow
the free energy, we nevertheless had to sacrifice accuracy at small time scales.
Inspecting the unbinding of benzamidine from trypsin and the unbinding of a resorcinol
scaffold-based inhibitor from the N-terminal domain of heat shock protein 90 (Hsp90) in
Sec. 6.2, we observed that dcTMD-based Langevin models correctly predicted dynamics
on the order of millisecond (trypsin) to half a minute (Hsp90) within a factor of ten
via the T-boosting approach presented in Sec. 3.4. Compared to other computational
methods which aim for such slow dynamics [167] our deviations are very competitive.

96



7 Langevin modeling of nonequilibrium
dynamics

Prof. Farnsworth: "Nothing is impossible! Not if you believe in it.
That’s what being a scientist is all about!"

Cubert Farnsworth: "No, that’s what being a magical elf is all about!"
– Professor Farnsworth, Cubert Farnsworth, "Futurama", season 2, episode 15

Up to now we only considered the modeling of equilibrium dynamics although many
biomolecular processes belong to the nonequilibrium regime. The following studies will
inspect the capabilities of the data-driven Langevin framework to model such dynamics.
This approach can be motivated by the observation that standard Langevin theory can
be generalized in many different ways [32, 40, 74, 75, 168–171]. For example, it is
possible to derive nonstationary versions of the generalized Langevin equation based
on projection operator techniques [32, 74, 75, 170]. Or we can deduce the equations of
motions for low-dimensional collective coordinates based on the microscopic Hamiltonian
of the full system [172] and consider nonequilibrium relaxation processes in terms of
nonstationary initial conditions [171]. Before one can test the applicability of the data-
driven Langevin approach to nonequilibrium dynamics, it is mandatory to discuss the
considered processes since the expected modifications of the Langevin model depend
on the characteristics of the inspected nonequilibrium scenarios. Here, we will consider
two different situations. First, an externally driven system is considered, i.e., a system
which is influenced by the time-dependent external force f ext(t). We can relate this
setup to atomic force microscopy experiments. It will discussed in the following which
modifications of the Langevin framework are needed to account for these dynamics. To
test our assumption we will inspect the enforced dissociation of sodium chloride.
Additionally, we will inspect relaxation processes, i.e., dynamics which can be associated
with, e.g., photoexcitation. Here, the system generally starts in some nonstationary
distribution ρ(t0) and relaxes into its equilibrium distribution ρeq. Again, we will discuss
the expected modifications of the Markovian Langevin equations. The main observation
will be that the finite MD simulation time tmax is expected to modify the model results.
By considering a hierarchical model energy, we will inspect the practical implications
of this finding, i.e., we will inspect the convergence behavior of the dLE for limited
data. Afterwards, we consider as exemplary relaxation process the crystal nucleation of
a compressed liquid of hard spheres to verify our assumption that the dLE is indeed able
to reproduce such dynamics.

7.1 Modeling of external driving
Regarding the concept of external driving discussed in the following, we might think of
some situation as depicted in Fig. 7.1. Here, the binding/unbinding dynamics of NaCl
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is described by the interionic distance x, just as known from Sec. 5.1. In contrast to
the equilibrium studies above, we now add the additional force fext(t) to enforce the
dissociation of the two ions, i.e., the jump out of the deep state at x ≈ 0.26 nm is
assisted by fext(t). When constructing a Langevin model for such a process we have to
understand how fext(t) might influence the different Langevin fields.
First, it is obvious that fext(t) needs to be added to the deterministic drift f(x) ∝
−dF (x)/dx. On the level of all-atom MD simulations, where external forces can simply
be added to the internal forces, this is enough to take the external driving into account
but for the reduced dynamics of the Langevin equation it a priori not clear if the other
two fields, friction and noise, remain unchanged. In fact, several studies [74, 75, 173]
showed that it is possible that Γ and K change significantly if external forces are applied.
However, in the linear response regime where, following Onsager’s regression hypothesis
[118], nonequilibrium perturbations obey the same laws as equilibrium oscillations, Γ
and K stay unaffected.

+ -

Figure 7.1: External driving When applying the external pulling force fext(t) along
the interionic distance x, it is possible to enforce the dissociation of solvated
sodium chloride.

In the next section we will inspect if it is realistic to assume linear response for molecular
systems like NaCl. This means that we will check if a given Langevin model (derived
from equilibrium data) only needs to be modified by replacing the (equilibrium) free
energy F (x) by a biased energy landscape F(x, t) with

F(x, t) = F (x) + Vext(x, t). (7.1)
Here, Vext(x, t) represents the external potential driving the system.
For completeness it should be noted that it is in principle also possible to go beyond
linear response by constructing a dLE directly from data of the driven system. At this
point we have to allow for explicitly time-dependent Langevin fields which means that the
next-neighbor average Eq. (4.10) needs to be replaced by the explicitly time-dependent
average 〈B(x(tn), tn)〉 with

B(y(tn), tn) = 〈B(x(tn), tn)〉 = 1
Ntraj

Ntraj∑
i=1

B(x(i)(tn), tn)δ(y(tn)− x(i)(tn)). (7.2)
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Here it is assumed that the considered nonequilibrium process is sampled by Ntraj indi-
vidual trajectories xi(tn). The function δ(y(tn)− x(i)(tn)) represents a boxing function
which equals 1/k for the k next neighbors of dLE point y(tn) and is zero otherwise.

7.1.1 Enforced dissociation of sodium chloride in water

We will now test if it is possible to describe the enforced dissociation of NaCl with a
Langevin model which assumes linear response. In analogy to atomistic force microscopy
experiments, the biasing force (see Fig. 7.1) is defined as harmonic potential [174–176]

Vext(x, t) = −C2 [x(t)− (x0 + vt)2] (7.3)

with C being the spring constant, x0 the initial position of the spring and v the pulling
velocity. In case of a sufficiently small v we expect that the enforced dynamics of NaCl
take place close to equilibrium so that linear response can be assumed.
For studies of the Langevin modeling based on the dissipation-corrected targeted MD
framework [42, 126] it was found that v ≈ 10 m/s represents a reasonable upper bound
for linear response behavior. Here, the pulling approaches the picosecond time scale
of the solvation shell dynamics [42]. Due to this finding, our reference restrained MD
simulations employ v = 10 m/s as well. The biasing force is exactly given by Eq.
(7.3), two sets of 103 trajectories each were created using C = 100 kJ/(mol nm2) and
C = 1000 kJ/(mol nm2). The MD simulations used the same setup as the equilibrium
MD simulations in Sec. 5.1, see Sec. A.4.1 for details. We note that the MD simulations
were already used to construct a nonstationary generalized LE of this process [177].
The MD trajectories itself can be seen in the left column of Fig. 7.2. We see that C = 100
kJ/(mol nm2)) represents a relatively weak spring, the transition time distribution is
rather broad, such that transitions can be observed during the whole simulation time.
The larger spring constant C = 1000 kJ/(mol nm2)), on the other hand, restricts the
system dynamics much stronger. Here, the system remains for t ≤ 20 ps in the bound
state before it rapidly moves over the barrier to the unbound state. We observe that the
distribution of transitions times has a width of the order of 10 ps, i.e., it is relatively
narrow. Having reached the unbound state, the MD trajectories closely follow the spring.
Now we construct a Langevin model based on the studies in Sec. 5.1. To emphasize that
this model is based on equilibrium data, it will be called EQ-dLE model in the following.
Its free energy can be taken from equilibrium MD or rescaled dLE, see for example Fig.
7.1. To choose the friction, we recall that the rescaled dLE estimated an approximately
constant Γ, see Fig. 5.7. This motivates to set the friction of the EQ-dLE model to
Γ = 594 kJ ps/(mol nm2) by using the same unit convention as the spring constant C,
see Sec. A.3 for details on the unit transformation. The mass estimate of the rescaled
dLE coincides with the reduced mass of NaCl, i.e., M = 13.88 u, and together with
kBT = 2.5 kJ/mol at T = 300 K we get K = 54 kJ ps1/2/(mol nm) by using the
fluctuation-dissipation theorem. As final step the EQ-dLE model is complemented with
the external force Eq. (7.3) by simply adding it to the Markovian Langevin equation.
Then, the equations of motion are integrated using a time step of δt = 10 fs and the
bound state as starting conformation. 103 trajectories are produced for each of the two
springs. They closely resemble the MD for both spring constants, see the right column
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of Fig. 7.2. Again, the weak spring leads to an broad distribution of transition times,
while the stiff spring restricts the trajectory much stronger.
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Figure 7.2: Exemplary trajectories for MD and EQ-dLE model. MD trajectories
for C = 100 kJ/(mol nm2)) (a) and C = 1000 kJ/(mol nm2)) (c) are shown.
The panels (b) and (d) show trajectories of the EQ-dLE model with similar
spring constants.

To compare the dynamics of MD and EQ-dLE model in more detail, we first remove the
systematic drift caused by the spring from the non-stationary trajectories x(t). To this
end the mean-free variable [177]

δx(t) = x(t)− 〈x(t)〉
〈(x(t)− 〈x(t)〉)2〉1/2

(7.4)

is introduced where the averages are taken over the different trajectory ensembles. The
autocorrelation of this variable

Cx(t, t+ τ) = 〈δx(t)δx(t+ τ)〉 (7.5)

does not only depend on the lag time τ but also on the initial time t, see Sec. 2.4. As
we see in Fig. 7.3a and b the position autocorrelations of both trajectory sets, MD and
EQ-dLE model, decay very similarly for the weak spring. The decay time is of the order
of ≈ 20 ps independent of t.
When considering the stiff spring, Fig. 7.4a and b, we see that the position autocorre-
lations of MD and EQ-dLE model coincide as well but decay faster than for the weak
spring. For t = 10 − 15 ps the decay constant is of the order of ≈ 5 ps while the auto-
correlations decay faster (≈ 1 ps) for larger t. The slower decay at early times can be
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associated with forward and backward crossings over the main energy barrier while the
fast decay at larger t is tied to hydration shell dynamics around the two ions [42].
In total we can conclude that, at least for the inspected observables, the enforced dis-
sociation of NaCl can be covered by a Markovian Langevin model constructed based on
equilibrium data. This can be seen as conformation for the assumption that the NaCl
dynamics evolve in the linear response regime as long as moderate pulling velocities v
are used. Still, just as for the rescaled dLE modeling of the equilibrium dynamics in Sec.
5.1, the EQ-dLE model has certain limitations. When considering the velocity autocor-
relations Cv, shown in Figs. 7.3c and d and Figs. 7.4c and d, we observe for the MD a
fast initial decay on a time scale of ≈ 25 fs followed by damped oscillatory features with
a period of ≈ 120 fs. Besides a weak dependence on the spring constant, the amplitude
of these oscillations changes with time t, for smaller t it is higher.
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Figure 7.3: Position and velocity autocorrelations for the weak spring. The
position autocorrelations Cx of the MD (a) and the EQ-dLE model (b) are
presented. Additionally, the velocity autocorrelations Cv of the MD (c) and
the EQ-dLE model (d) are shown. The considered spring constant is C = 100
kJ/(mol nm2)).

When considering the EQ-dLE model it turns out that the Langevin model successfully
covers the initial decay of Cv but underestimates, or even misses, the following oscilla-
tions. Hence, just as for the equilibrium dynamics in Sec. 5.1, the Markovian Langevin
model misses the dynamical details time scales of ≤ 0.1 ps but successfully reproduces
the long time scales at ≈ 1− 103 ps.
As final consideration we can have a look at the behavior of a dLE model directly con-
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structed on the nonequilibrium data without modifying the next-neighbor estimation
according to Eq. (7.2). As can be seen in Fig. A.12, this naive approach produces tra-
jectories which completely miss the spring force. This can be explained by the lack of
time information in the normal next neighbor estimation (Eq. (4.10)) were the driving
force is falsely averaged out in the individual neighborhoods. This shows that we truly
need to modify the next neighborhood estimation according to Eq. (7.2) if we want to
derive a dLE model directly on the data.
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Figure 7.4: Position and velocity autocorrelations for the stiff spring. The posi-
tion autocorrelations Cx of the MD (a) and the EQ-dLE model (b) are pre-
sented. Additionally, the velocity autocorrelations Cv of the MD (c) and the
EQ-dLE model (d) are shown. The considered spring constant is C = 1000
kJ/(mol nm2)).

7.2 Modeling of relaxation processes

In contrast to external driving, relaxation processes do not include explicitly time de-
pendent forces. Instead, the nonstationary nature of such dynamics is a result of the
chosen initial conditions. As depicted in Fig. 7.5, the system starts at t0 in the high
energy state ρ(t0) and relaxes for t > t0 toward its low energy equilibrium state ρeq. Al-
though the starting configuration of this process is by design nonstationary, the system
itself is defined just the same as in equilibrium, i.e., the system Hamiltonian is time-
independent. As consequence we see that the relaxation dynamics are governed by the
free (equilibrium) energy landscape F (x), just as shown in Fig. 7.5. From perspective
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of the Markovian Langevin equation these considerations imply that the drift field f(x)
should be the same as in equilibrium. Additionally, identical Hamiltonians imply that
equilibrium and relaxation dynamics are governed by the same Γ and K, i.e., all three
Langevin fields are unchanged.

Figure 7.5: Relaxation process Initialized in the high-energy state ρ(t0), the system
explores the free energy F (x) by crossing the different barriers at time scales
t1 and t2. The process ends once the low-energy equilibrium state ρeq is
reached.

Still, in case we want to determine the respective fields by, e.g., the dLE, it needs to be
taken into account that there needs to be sufficient data everywhere in the conforma-
tional space to allow for converged estimations. Since the initial high energy state ρ(t0)
is hardly visited again once the trajectory left it, one single reference time trace will not
be sufficient to parameterize the LE. This means that we have to perform an ensemble
average over numerous independent nonequilibrium trajectories xr(tn) of some length
tmax where r = 1, 2, ..., Ntraj indicates the (arbitrary) numbering of the trajectories. In
consequence, the convergence of the next-neighborhood estimation, and by this the ac-
curacy of the Langevin fields, heavily depends on both parameters, Ntraj and tmax. For
example, considering again the system in Fig. 7.5, it is very likely that a short trajectory
length tmax ≈ t1 only allows to cover the initial dynamics t . t1 but not the further
relaxation to ρeq with t & t2.
As consequence of a finite sampling time tmax, the dLE will estimate a drift field
f(x) which deviates from the equilibrium average f eq(x) = −∇F (x). Since F (x) =
−kBT ln(P (x)) depends on the equilibrium distribution P (x), which will not be com-
pletely sampled by the short nonequilibrium trajectories of length tmax, the dLE observes
a "biased energy landscape" [138]

F(x) = −kBT ln(P(x)) (7.6)

instead where P(x) ∝
∫
dtρ(x, t) represents the distribution sampled within 0 ≤ t ≤

tmax. Only for tmax → ∞ (or more exactly for P(x) → P (x)) it can be expected that
F(x) approaches F (x). It is worth to stress at this point that (concerning Eq. (7.6)) the
term "biased" only refers to the nonstationary initial conditions and does not indicate
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any external biasing force like, e.g., given in Eq. (7.1).
In summary, our considerations up to this point indicate that it is in practice possible
that F(x) only covers parts of the equilibrium free energy. Considering the example in
Fig. 7.5, it may happen that only the initial and intermediate states are covered if tmax
is chosen too small. In consequence, any dLE model constructed for this data will only
cover these states as well.
Still, although the global observables F(x) and F (x) can easily deviate, the dLE drift
field f(x) = −∇F(x) is only weakly influenced by these deviations, as it is locally
defined. Representing the slope of the energy landscape at x, the dLE can estimate the
drift based on local averages. These local averages converge much faster than F because
the nonequilibrium trajectories x(r) successively sample the consecutive energy minima
by staying some time inside of them before performing the next jump. Since Γ and K
are also estimated based on local averages, their estimates should be unproblematic as
well. Hence, we expect in general that the dLE might not sample the full configurational
space once tmax is too small but the covered dynamics should be nevertheless accurately
modeled. In the next section, we will inspect if this assumption holds true.

7.2.1 Hierarchical energy landscape

To investigate the effect of finite data on the resulting Langevin model, we consider
the one-dimensional free energy landscape depicted in Fig. 7.6. Here, four states are
separated by three energy barriers of similar height. The model is inspired by photo-
or ligand-induced conformational transitions in proteins [178, 179] where the system is
prepared in some nonstationary state (here state 1) from which it evolves via intermediate
states (state 2 and 3) before it finally enters another, more stable, low-energy state (state
4). The hierarchical shape of the energy landscape effects that 1↔2 transitions occur

1
3
2

2

4

3

/

Figure 7.6: Hierarchical free energy landscape. The reference (black) reveals four
states connected via energy barriers of similar height. The grey regions at
the x-axis indicates the cores of the states used to calculate waiting times.
State 1 represents the starting state of the dynamics we are observing. Three
sets of trajectories of length tmax = 0.4 ns, 3 ns and 16 ns are generated to
serve as dLE input resulting in biased energy landscapes F(x), see Eq. (7.6),
reaching state 2 (blue), 3 (green) and 4 (red), respectively.
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earlier and more rapidly than 1↔3 dynamics which, in turn, emerge earlier and more
frequent than 1↔4 transitions.
To complete the Langevin model we chooseM = 400 ps (which equals 26 u), Γ = 2000,
T = 300 K and take an integration time step of δt = 0.04 ps. Twenty long trajectories
of 16 µs each were simulated, every time series starts in state 1 at x = 0. As dynamical
observable we consider the average waiting times twait of the transitions 1→ j. As we
see in Fig. 7.7, the transitions 1→2 occur on a time scale of ≈ 3 ns, the transitions
1→3 on a time scale of ≈ 30 ns and the dynamics 1→4 need times of ≈ 150 ns. Hence,
as expected, there is a pronounced separation of time scales. The mean values of the
different waiting times can be found in Tab. 7.1. We see that the reference data is
large enough to minimize the errors on the estimates. The excellent convergence of the
reference can also be seen in the estimates energy landscape which perfectly reproduces
the input free energy.
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Figure 7.7: Convergence of waiting times. Shown are distributions of waiting times
τwait,i→j from the reference (black) and dLE simulations using input data
of length 0.4 ns (blue, the dLE only reaches state 2), 3 ns (green, the dLE
reaches state 2 and 3) and 16 ns (red, the dLE reaches all state). Top left,
we see the transition 1→2, top right the transition 1→3, bottom left the
transition 1→4 and bottom right 4→1.

Having specified the reference dynamics, we can now inspect the effects of tmax on the
dLE predictions. To this end, three different input data sets were construct by choosing
tmax based on the waiting time distributions in Fig. 7.7. Each of the three data sets
consist of 102 Langevin trajectories which were produced with δt = 0.04 ps and started
in state 1. By setting tmax = 0.4 ns, 3 ns and 16 ns, approximately ten transitions to
state 2 (tmax = 0.4 ns), 3 (tmax = 3 ns) and 4 (tmax = 16 ns) are collected. To speed up
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the dLE dynamics, the data sets were pre-averaged, see Sec. 4.1.5, to apply the binned
dLE. Each of the data sets was pre-averaged to ≈ 104 points, see Sec. A.14 for details on
the settings. For each of the pre-averaged data sets ten dLE trajectories with a length
of 10 µs-long were produced. The dLE runs sample the different transitions at least 103

times, i.e., their predictions of statistics and dynamics have converged. By considering
the biased energy landscapes F(x) estimated by the dLE, see Fig. 7.6, we see that it

data τwait1→2 τwait1→3 τwait1→4 τwait4→1
reference 2.5± 0.01 23± 0.2 143± 3.3 30± 0.7
dLE (0.4 ns) 2.4± 0.02 – – –
dLE (3 ns) 2.4± 0.01 22± 0.3 – –
dLE (16 ns) 2.5± 0.02 21± 0.3 110± 4.3 24± 0.9

Table 7.1: Average waiting times (given in ns) of selected transitions i → j between
states i and j for the hierarchical energy landscape in Fig. 7.6. The first row
represents the reference data, the following rows show dLE results based on
different data sets with varying length tmax (given in parenthesis). Errors are
calculated as standard deviations of the mean. Note that transitions marked
with "–" do not occur.

Figure 7.8: Friction estimate for varying data length. By increasing the length of
the input trajectories, the scattering of the dLE friction estimate Γ can be
reduced. Shown are the estimates for lengths of tmax = 0.4 ns (blue), 3 ns
(green) and 16 ns (red).

indeed depends on tmax if the dLE detects two, three or all four minima. Still, once
a specific minimum is covered by the dLE, it is reproduced quite well, i.e., F and the
equilibrium free energy F (x) coincide. In consequence the derivative of F(x) covers the
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derivative of F (x). When inspecting the friction estimate Γ, see Fig. 7.8, it can be seen
that the dLE correctly estimates on average Γ = 2000 even for the smallest tmax. We
note that the same holds for the estimate of the noise amplitude K and the massM (not
shown). As consequence of the accurate estimations of the dLE fields we observe average
waiting times for 1→2 and 1→3 which reproduce the reference very well, only a deviation
of ≈ 4% can be found, see Tab. 7.1. The waiting time distributions of reference and dLE
are in line as well, see Fig. 7.7, the only difference is that the dLE tends to overestimate
fast transitions for small tmax. When considering the slowest transition 1→4 we see that
the dLE with tmax = 16 ns deviates by about 20%, i.e., the dLE prediction is not as
accurate as for the other transitions. A similar relative error can be observed for the
opposite direction 4→1.
In summary, we can nevertheless conclude that only a few transition events need to
be covered by the input data to allow for qualitatively correct dLE predictions of the
observed dynamics. The estimated "biased energy landscape" F(x) might deviate from
the equilibrium free energy F (x) but the (local) derivative as well as friction and noise
are qualitatively reproduced by the dLE based on limited input statistics.

7.2.2 Pressure-induced nucleation of hard spheres

We now challenge the capabilities of the dLE to model relaxation processes by considering
the crystal nucleation of a compressed liquid of hard spheres. This system was already
used as test problem for the derivation of a nonstationary generalized Langevin equation
[180, 181] which makes it instructive to inspect if the Markovian dLE can provide a
reasonable dynamical model for this weak first-order phase transition [182].
The considered system consists of 16384 hard spheres defined by mass M, diameter
σ and natural time step δt =

√
M/kBTσ. Our reference MD data was simulated by

Meyer at al. [181]. Here, the system was initially equilibrated in a liquid state at a
volume fraction of η0 = 0.45 before it was impulsively compressed to η = 0.54 at t = 0
by rescaling the simulation box as well as all positions. This compression induced the
crystallization process. In total, Ntraj = 580 nucleation trajectories with a length of
tmax = 214 δt were produced.
As first step to apply the dLE one needs to define the system variable. We choose
here the percentage x of particles that completed crystallization as single collective
coordinate since it directly accounts for the evolution of the nucleation. We note that
x can be readily calculated from the Q6 order parameter [180, 181]. Fig. 7.9a displays
eight exemplary MD trajectories x(t). Due to the fact that nucleation seeds need to
form before the crystallization can happen, the trajectories stay some time at x = 0
before the nucleation begins. The distribution of this "induction time" is quite wide,
especially when comparing it to the fast, sigmoidal-shaped rise of x(t) representing the
crystallization itself. This process needs only about 20 δt. When inspecting the MD
trajectories closer, we see that 357 trajectories reach values x & 0.8 where they level
off and slowly converge against the maximally possible x = 1. On the other hand, 125
trajectories, i.e., a significant fraction, get stuck at x ≈ 0.65. This behavior reflects
the occurrence of crystal defects hindering the successful nucleation of the full system
[180, 181]. The remaining 98 trajectories start too late to decide whether they get stuck
at x ≈ 0.65 or reach x = 0.8. To get an overall idea of the time scale of the whole
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nucleation process we can average over all MD trajectories (see Fig. 7.9b) and find a
time of ≈ 100− 150 δt.
The different dynamical patterns observed for the individual trajectories can also be
seen when inspecting the energy landscape F(x) defined by Eq. (7.6) (see Fig. 7.10a).
The deep initial minimum at x ≈ 0.014 represents the initial liquid state of the system,
while the minimum at x = 0.65 accounts for the trajectories with defective clusters.
The depth of the last minimum at x ≈ 0.95 highly depends on tmax since it represents
the (approximately) completed nucleation of the full system, i.e., if tmax gets larger,
proportionally more trajectory points will contribute to this minimum and it will get
deeper. This holds because more and more trajectories reach x ≈ 0.95 for growing tmax
and trajectories which already reached this state cannot leave it again.
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Figure 7.9: Exemplary trajectories of the nucleation of hard spheres. (a) Here,
we see some exemplary MD trajectories. For comparison, the bottom row
presents trajectories of the dLE based on the full data (c) and only based
on the MD trajectories which reach x = 0.8 (d). (b) This panel depicts the
average value 〈x(t)〉 of the MD and the two dLE sets based on 580 (MD)
and 600 (dLE) trajectories.

As dynamical quantity to evaluate the dLE performance later on, we define the nucle-
ation time tnuc as the time needed by the individual MD trajectories to cross x = 0.8.
Fig. 7.10b shows the distribution calculated from the successfully crystallizing MD runs.
Due to the relatively small statistics the resolution is quite low but we can nevertheless
detect the peak at tnuc = 76 δt. The mean nucleation time is slightly larger and given
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by 〈tnuc〉 = 102 δt.
Now, we can inspect the capability of the dLE to model the nucleation dynamics. It
turns out that the noise detected by the dLE at 1 · δt already covers the characteristics
of white noise (see Sec. A.15). Hence, this time step was used to produce 104 dLE tra-
jectories of length tmax = 214 δt where each run started at x = 0.02. When considering
exemplary trajectories (Fig. 7.9c) we see that the dLE qualitatively reproduces the in-
duction time distribution as well as the sigmoidal-shaped rise of x(t). The average over
the dLE trajectories (Fig. 7.9b) qualitatively coincides with the MD as well.
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Figure 7.10: Modeling results for the nucleation of hard spheres. Shown are (a)
the biased energy landscape F(x), (b) the distribution of nucleation times
tnuc, (c) the friction estimate Γ(x) and (d) the mass estimate M(x). The
black curves in the top row show MD results while the black curves in the
bottom row depict the MD energy landscape. The dLE results based on
the full MD data are given in red while green represents the dLE estimates
when only using successfully crystallizing MD trajectories as input data.

When inspecting the nonstationary energy landscape F(x) (see Fig. 7.10a) we find in
addition that the dLE perfectly reproduces the MD. Still, there are some differences
between MD and dLE. First, the dLE trajectories mostly do not directly rise to x ≈ 0.8
but stay for some time around x ≈ 0.65 before they are able to leave the local minimum
again. In turn, we do not find any dLE trajectory which gets stuck at x ≈ 0.65. Both
observations result from the local estimation of the dLE fields where crystallizing and
defective MD trajectories are simply mixed. As consequence, the dLE distribution of
tnuc, Fig. 7.10b, is shifted compared to the MD. It peaks around tnuc = 100 δt and yields
as mean nucleation time 〈tnuc〉 = 128 δt.
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To quantify the influence of the defective MD trajectories on the dLE performance, we
can produce dLE trajectories only based on those MD runs which successfully reach
x = 0.8. Though it should be kept in mind that we do not just remove the defective MD
runs this way but also trajectories which would successfully crystallize for t > 214 δt.
Still, based on the fact that the MD distribution of tnuc peaks much earlier, this problem
should be minor. Hence, 104 dLE trajectories based on the 357 successfully crystallizing
MD runs were simulated. Exemplary trajectories shown in Fig. 7.9d indeed reveal that
the dLE dynamics do not get stuck at x ≈ 0.65, just as expected. The nonstationary
energy landscape, Fig. 7.10a, confirms that the minimum at x ≈ 0.65 can be associated
with the defective trajectories since it vanished from perspective of the dLE. Still, this
does not mean that the nucleation time tnuc of the MD can be perfectly reproduced by
the dLE. Averaging over all 104 dLE runs, see Fig. 7.9b, it turns out that the crystalliza-
tion happens too fast when omitting the defective MD trajectories. Consequently the
distribution of tnuc, see Fig. 7.10b, peaks earlier at tnuc ≈ 60 δt and the mean nucleation
time turns out to be predicted as 〈tnuc〉 = 83 δt.
Hence, simply removing the defective MD trajectories does not perfect the dLE model.
On the other hand it should be noted that the overall MD statistics are not optimal.
Longer MD runs, for example, would give us the possibility to distinguish more reliably
between crystallizing and defective trajectories since all slow (but successfully crystalliz-
ing) runs would gradually reach x ≈ 0.8. Although this concerns only relatively few MD
trajectories (given that the MD distribution of tnuc peaks at 76 δt), it might be possible
that those few runs contribute essential information needed to slow down the dLE in the
initial deep minimum.
To conclude this study we will take a look at the dLE estimate of Γ as functions of x.
Fig. 7.10c shows that the friction is small at the main barrier and large at the two main
minima reflecting the liquid and crystallized state. To understand this behavior, we re-
call that the system coordinate x represents the fraction of crystallized particles and that
Γ accounts for the fluctuations of the associated velocity. Considering the initial shock-
compressed state and the final crystallized state, these fluctuations are expected to be
high, since they reflect the highly restrained collective motion of the system. Meanwhile,
the transition over the barrier is very different. It starts once a single crystal cluster (out
of the numerous initial clusters existing after shock compression) exceeds a critical size
[183] and evolves relatively rapidly. As we see that the crystallization occurs with a sim-
ilar velocity in all simulations (Fig. 7.9a), the variance of the velocity and consequently
the friction is low on the barrier. Compared to the other systems studied in this thesis
where the friction is found to change only little, this pronounced variation of the friction
by a factor of ≈ 103 is remarkable. It presumably reflects the high cooperativity of the
crystallization that involves essentially all particles, while typically only a comparatively
small subset of atoms performs cooperative motion for our other systems. Interestingly,
when consideringM (Fig. 7.10d) calculated according to Eq. (4.17) based on Γ, we see
that it behaves very similar to Γ.
In summary, it can be concluded that it is possible to construct a dLE model of the nu-
cleation of hard spheres, which is able to cover the MD dynamics at least qualitatively.
Given the highly pronounced nonstationarity of this process, this finding strongly sup-
ports the line of thought in Sec. 7.2, i.e., the dLE is truly able to model relaxation
processes.
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7.3 Connection to the nonstationary generalized Langevin
equation

The Markovian Langevin equation (3.28) relies on a time scale separation between the
fast bath degrees of freedom and the slow system coordinate x. To circumvent this
limitation, which typically requires a high-dimensional system description, many imple-
mentations of the generalized Langevin equation (GLE), see Sec. 3.2.2, were proposed.
One such implementation was presented by Meyer and coworkers [74, 75]. Based on a
time-dependent projection operator formalism, this approach can account for nonequi-
librium dynamics. In particular, this implementation of the GLE was used to model the
nucleation of hard spheres [181]. Here, it was concluded that the memory kernel needed
to cover the crystallization dynamics decays slowly, which appears to be incompatible
with our results in Sec. 7.2.2 where it was shown that the (Markovian) dLE performs
satisfactorily as well. Still, this apparent paradox can be solved.
The nonstationary GLE of Meyer et al. is, due to the used Mori-type approximation,
different to the GLE (3.21) derived in Sec. 3.2.2 based on the work of Zwanzig [32]. Here,
the equation of motion of some variable A(t) is given by [74, 75]

dA

dt
= ω(t)A(t) +

∫ t

0
K(t, τ)A(τ)dτ + η(t) (7.7)

with memory kernelK(t, τ) and noise η(t) related by a generalized fluctuation-dissipation
theorem. In contrast to Eq. (3.21), we see on the left side of this equation dA/dt and not
d2A/dt2. Additionally, the drift force is set to ω(t)A(t) which vanishes for a mean-free
variable A(t).
Now we can compare our Markovian Langevin framework to this GLE. First, we note
that, even for a one-dimensional system coordinate x, our framework is not defined by
a single first-order differential equation like Eq. (7.7), but by the two equation

ẋ(t) = p(t)/M, (7.8)
ṗ(t) = f(x)− Γp(t) +Kξ(t), (7.9)

where Γ is assumed to be constant, for simplicity. To relate our two equations to Eq.
(7.7) it is possible to follow the calculations of Zwanzig [31] by integrating Eq. (7.9)
which yields

p(t) =
∫ t

0
e−Γ(t−τ)/Mf(x(τ))dτ +

∫ t

0
e−Γ(t−τ)/MKξ(τ)dτ (7.10)

when assuming p(0) = 0. After inserting this in Eq. (7.8) we get

ẋ(t) =
∫ t

0
K(t, τ)x(τ)dτ + η(t), (7.11)

with the memory kernel

K(t, τ) = 1
M

e−Γ(t−τ)/M f(x(τ))
x(τ) , (7.12)
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and the corresponding colored noise

η(t) = 1
M

∫ t

0
e−Γ(t−τ)/MKξ(τ)dτ. (7.13)

Note that the memory kernel reduces to a simple exponential function for linear drift
forces, i.e., f(x(τ))/x(τ) = const. In this case, the kernel only depends on the time
difference t− τ and becomes independent of the position x.
This brief calculation shows that it is indeed possible that the GLE framework defined
by Eq. (7.7) and the Markovian Langevin approach defined by Eqs. (7.9) and (7.8) are
simultaneously correct. The observation of apparently non-Markovian system features
based on the GLE, like a slowly decaying memory kernel, could potentially be the result
of a nontrivial multistate energy landscape with high barriers, i.e., slow state transitions.
By explicitly including this energy landscape into the equations of motion it might
be possible to construct a Markovian system description which relates to the GLE as
sketched above. This explains why we could derive a reasonable Markovian Langevin
model for the nucleation of hard spheres although other studies found a slowly decaying
memory kernel for the GLE defined by Eq. (7.7).

7.4 Summary
We have seen that only a few modifications are needed to apply the data-driven Langevin
approach to nonequilibrium dynamics. Two nonequilibrium scenarios were considered:
external driving in the linear response regime (Sec. 7.1) and relaxation processes (Sec.
7.2). It was observed that nonequilibrium conditions mainly affect the deterministic
drift. The free energy needs to be replaced by the biased energy landscape

F(x, t) = −kBT ln(P(x)) + Vext(x, t). (7.14)
Here, the term −kBT ln(P(x)) includes the distribution sampled within a finite MD
simulation time tmax, i.e., it accounts for relaxation processes as well as finite sampling.
The second term Vext(x, t), on the other hand, represents a time-dependent potential
induced by the external driving. In contrast to the drift, friction and noise remain ap-
proximately unaffected.
To validate our assumptions, we considered in Sec. 7.1.1 the enforced dissociation of
sodium chloride in water as example for external driving and in Sec. 7.2.2 the crystal
nucleation of a compressed liquid of hard spheres as example for relaxation processes.
In both cases, the Markovian Langevin models performed well. Additionally, we in-
spected the convergence behavior of the dLE for a finite MD simulation time tmax in
Sec. 7.2.1. Here, we observed for a hierarchical model system that shorter tmax bias the
dLE predictions toward too fast dynamics. We note that this finding coincides with our
observations for Aib9 in Sec. 5.2.4 were we observed that shorter input data leads to
faster dLE dynamics.
In the last Sec. 7.3 we made the connection to a nonstationary generalized Langevin
equation [74, 75] which predicted slowly decaying memory kernels for the enforced dis-
sociation of sodium chloride and the nucleation of hard spheres. Although this seemed
to be incompatible with our findings in this chapter, it was shown that both Langevin
descriptions, generalized and Markovian, can be simultaneously correct due to different
partitionings between system and bath.
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8 Conclusion and outlook

"The difference between your decision and ours is
experience. But you don’t have to rely on that."

– Levi Ackerman, "Attack on Titan"

Gaining comprehensive insights into the dynamics of proteins is a long-standing scientific
challenge due to their inherent structural complexity and the diversity of dynamical time
scales. Although molecular dynamics (MD) simulations opened the door to microscopic
descriptions of the dynamics of interest, it is often still unclear how to properly interpret
and analyze the resulting extensive data sets.
In this thesis we investigated the capabilities of the data-based Markovian modeling to
provide "post-simulation" models, which approximate the (high-dimensional) MD simula-
tion by low-dimensional model dynamics. Here, we focused on the Markovian Langevin
equation via the data-driven Langevin (dLE) approach. We saw that the Markovian
Langevin equation represents a correct approximation of memory-based dynamics once
the temporal resolution δt of the dLE is chosen larger than the memory decay time of
the system. Since this cannot always be ensured, we formulated the rescaled dLE, which
compensates the effects of too short δt by rescaling the friction.
Using this approach we were able to derive as a first example an one-dimensional model
of the dissociation and association of water solvated sodium chloride. It accurately
predicted association and dissociation times on the order of hundreds of picoseconds.
Although it is known that the surrounding water plays a significant role in the dynamics
of sodium chloride [141], we did not need to include any explicit water coordinate in our
system description. Additionally, generalized Langevin dynamics with a memory decay
time on the order of the water time scales did not improve the model significantly. This
shows that the rescaled dLE is well suited to provide (Markovian) Langevin models also
for suboptimal (or incomplete) system coordinates.
Given that the main bottleneck of MD analysis is often the definition of a suitable low-
dimensional system description, this indicates that the rescaled dLE can significantly
accelerate the modeling process for new, unknown biomolecular systems. Instead of
extensively searching for the perfect coordinates we can simply take a selection of rea-
sonable (and transparent) degrees of freedom, apply the rescaled dLE and investigate
the resulting model dynamics which should correctly account for the long time scales of
the system.
Considering the modeling of the dynamics of the 164-residue T4 lysozyme, we saw di-
rectly how this idea can be implemented for complicated systems. Although extensive
studies were performed to derive appropriate system coordinates [71, 150], the currently
established two-dimensional coordinate set did not allow for an accurate Markov state
model (MSM). While it was possible to cover the time scale of the transition between the
two main states, the MSM overlooks the pathways on which the transition is performed.
Adding additional system coordinates did not allow for the use of smaller lag times in the
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MSM construction. Hence, we applied the rescaled dLE to the two-dimensional system
description and derived a reasonable Langevin model at a small time step. Although we
had again to sacrifice accuracy at short time scales, we were able to provide model tra-
jectories which follow the given free energy and reproduce the long time scales observed
in MD.
As another important advancement, we introduced the binned dLE to allow for the anal-
ysis of extensive MD data sets via pre-averaging. Considering a large enhanced sampling
data set (8·107 data points [73]) of the small AIB9 peptide, we carefully ensured that this
approach does not harm the resulting five-dimensional Langevin model if done correctly.
We were able to reduce the number of data points by a factor of 102, which shows that
the binned dLE opens the door to the analysis of other, more complicated, systems by
means of an enhanced sampling schemes which produces a lot of short MD simulations
in parallel [73].
Based on the above findings, we propose the following approach for future studies of (un-
known) protein dynamics. First, enhanced sampling MD simulations are used to gener-
ate numerous short trajectories which homogeneously sample the free energy landscape
along some coordinates of interest. Then, the data is pre-averaged at a time resolution
δt which is small enough to resolve the relevant dynamics. Finally, the rescaled dLE
is applied to the pre-averaged data to construct a Markovian Langevin model which
accounts for the long time dynamics of the system.
As an alternative to the sampling via many short trajectories, we considered the dissipation-
corrected targeted MD approach [42]. This framework allows for the construction of
one-dimensional Markovian Langevin models of extremely slow dynamics based on con-
strained MD simulations. Since it is not possible to effectively access time scales on
the order of milliseconds or higher by direct Langevin simulations (which would need
prohibitively many integration steps), we proposed the concept of T-boosting. Here,
we integrate the Langevin equation at high temperature to reduce the needed simula-
tion times and subsequently extrapolate to the dynamics at the real temperature. By
considering Langevin models of trypsin-benzamidine and the ligand unbinding from the
N-terminal domain of heat shock protein 90 (Hsp90), we saw that this approach cor-
rectly predicts time scales on the order of milliseconds (trypsin-benzamidine) and tens
of seconds (Hsp90) within a factor of ten. This accuracy is very competitive compared
to other modeling results for trypsin-benzamidine [167].
Considering the question if the dcTMD-based modeling or the dLE-based approach
will be more promising for future Markovian Langevin studies, it needs to be kept in
mind that both frameworks have different virtues and shortcomings. One the one hand,
dcTMD is advantageous if the dynamics of interest can be enforced by constrained MD
simulations and if it is sufficient to describe them by a single system coordinate (which is
typically some distance). Once we are interested in multidimensional system dynamics
(which might include angles or linear combinations of microscopic distances), on the
other hand, the dLE can be more advantageous although the necessary MD simulations
might be more complicated than for dcTMD. Hence, both methods have somewhat dif-
ferent scopes and complement each other.
Finally, we extended the applicability of the data-driven Langevin approach to the
nonequilibrium regime. Two specific processes were considered: the external driving of
a system under study and the relaxation from nonequilibrium initial conditions. We saw
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that nonequilibrium mainly effects the deterministic drift of the Langevin framework.
In consequence, the free energy needs to be replaced by the biased energy landscape

F(x, t) = −kBT ln(P(x)) + Vext(x, t), (8.1)

where the first term account for relaxation processes (and finite sampling) and the second
term represents a time-dependent potential added by external driving. The other two
Langevin forces, friction and noise, stay approximately unaffected in the linear-response
regime. By considering the enforced dissociation of sodium chloride and the crystal nu-
cleation of a compressed liquid of hard spheres, we observed that an accordingly modified
Markovian Langevin model is indeed able to reproduce the reference results. At first
glance, this finding appears to be incompatible with recent studies based on a nonsta-
tionary generalized Langevin equation [74, 75] which predicted slowly decaying memory
kernels for the very same problems [177, 181]. Still, we saw that both Langevin frame-
works, the Markovian as well as the generalized, can be correct since they are based on
different partitionings between system and bath.
In summary, we conclude that Markovian (Langevin) models can be very useful for
future studies of biomolecular dynamics in both equilibrium and nonequilibrium con-
ditions. Despite their conceptional simplicity they can provide robust low-dimensional
approximations of high-dimensional MD dynamics, which will serve well to deeper un-
derstand the complicated dynamics of proteins.
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Appendix

A.1 Derivation of field estimates for the dLE
To derive the three field estimates of the normal dLE, we start with Eq. (4.5) and first
aim for Γ̂ by calculating

Cov(∆xm+1,∆xTm) = Cov(f̂(xm)− Γ̂(xm)∆xm + K̂(xm)ξm,∆xTm)
= f̂(yn)Cov(1,∆xTm)− Γ̂(yn)Cov(∆xm,∆xTm) + K̂(yn)Cov(ξm,∆xTm)
= −f̂(yn)0− Γ̂(yn)Cov(∆xm,∆xTm) + K̂(yn)0
= −Γ̂(yn)Cov(∆xm,∆xTm)

where we used that ξm represents white noise, i.e., Cov(ξm,∆xTm) = 0 holds. Since
we assumed that the covariances are calculated based on a local neighborhood, it is
possible to assume that the Langevin fields are the same for all neighboring points, e.g.,
f̂(xm) ≈ f̂(yn). This allows us to pull them out of the covariances. In total, we get

Γ̂(yn) = −Cov(∆xm+1,∆xTm)Cov(∆xm,∆xTm)−1

as friction estimate. To get the estimate of f̂(yn), we calculate

〈∆xm+1〉 = f̂(yn)〈1〉 − Γ̂(yn)〈∆xm〉+ K̂(yn)〈ξm〉
= f̂(yn)− Γ̂(yn)〈∆xm〉+ K̂(yn)0
= f̂(yn)− Γ̂(yn)〈∆xm〉

and use again the white noise properties of ξ, i.e., 〈ξm〉 = 0. In consequence we get

f̂(yn) = 〈∆xm+1〉+ Γ̂(yn)〈∆xm〉.

where we can insert the estimate of Γ̂(yn) from above. To derive the estimate of the
amplitude, we can as first step insert the drift estimate into Eq. (4.5) to get

∆xm+1 = 〈∆xm+1〉+ Γ̂(xm)(〈∆xm〉 −∆xm) + K̂(xm)ξm
which can be used to calculate
Cov(∆xm+1,∆xTm+1) = Cov(〈∆xm+1〉+ Γ̂(xm)(〈∆xm〉 −∆xm) + K̂(xm)ξm,

〈∆xm+1〉T + (〈∆xm〉 −∆xm)T Γ̂(xm)T + ξTmK̂(xm)T )
= 〈∆xm+1〉Cov(1, 1)〈∆xm+1〉T + 〈∆xm+1〉Cov(1, (〈∆xm〉 −∆xm)T )Γ̂(yn)T

+ 〈∆xm+1〉Cov(1, ξTm)K̂(yn)T + Γ̂(yn)Cov((〈∆xm〉 −∆xm), 1)〈∆xm+1〉T

+ Γ̂(yn)Cov((〈∆xm〉 −∆xm), (〈∆xm〉 −∆xm)T )Γ̂(yn)T

+ Γ̂(yn)Cov((〈∆xm〉 −∆xm), ξTm)K̂(yn)T + K̂(yn)Cov(ξm,1)〈∆xm+1〉T

+ K̂(yn)Cov(ξm, (〈∆xm〉 −∆xm)T )Γ̂(yn)T + K̂(yn)Cov(ξm, ξTm)K̂(yn)T
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which looks more complicated than it is. To simplify this expression, we need to con-
sider that all terms including Cov(1, ...) and Cov(...,1) are zero. Additionally, ξm is
uncorrelated to (〈∆xm〉 −∆xm) since it is white noise. In consequence, we have

Cov(∆xm+1,∆xTm+1) = Γ̂(yn)Cov((〈∆xm〉 −∆xm), (〈∆xm〉 −∆xm)T )Γ̂(yn)T

+ K̂(yn)Cov(ξm, ξTm)K̂(yn)T

= Γ̂(yn)(−Cov(〈∆xm〉,∆xm) + Cov(〈∆xm〉, 〈∆xm〉T )
− Cov(∆xm, 〈∆xm〉T ) + Cov(∆xm,∆xTm))Γ̂(yn)T

+ K̂(yn)Cov(ξm, ξTm)K̂(yn)T

= Γ̂(yn)(−〈∆xm〉Cov(1,∆xm) + 〈∆xm〉Cov(1, 1)〈∆xm〉T

− Cov(∆xm,1)〈∆xm〉T + Cov(∆xm,∆xTm))Γ̂(yn)T

+ K̂(yn)Cov(ξm, ξTm)K̂(yn)T

= Γ̂(yn)Cov(∆xm,∆xTm))Γ̂(yn)T + K̂(yn)Cov(ξm, ξTm)K̂(yn)T

where we used again that Cov(1, ...) and Cov(...,1) are zero. Cov(ξm, ξTm) is by definition
1 since ξm represents white noise. Hence, we end with

K̂(yn)K̂(yn)T = Cov(∆xm+1,∆xTm+1)− Γ̂(yn)Cov(∆xm,∆xTm)Γ̂(yn)T

where we can use a Choleskey decomposition to extract K̂(yn). Note that we can use

Γ̂(yn)T = −(Cov(∆xm,∆xTm)−1)TCov(∆xm+1,∆xTm)T

with (Cov(∆xm,∆xTm)−1)T = Cov(∆xm,∆xTm)−1 and Cov(∆xm+1,∆xTm)T = Cov(∆xm,∆xTm+1)
to get

Cov(∆xm,∆xTm)Γ̂(yn)T = −Cov(∆xm,∆xTm+1)
which means that

K̂(yn)K̂(yn)T = Cov(∆xm+1,∆xTm+1) + Γ̂(yn)Cov(∆xm,∆xTm+1)

represents an alternative equation to determine K̂(yn)K̂(yn)T .

A.2 Derivation of field estimates for the Verlet-dLE
Starting with Eq. (4.34), we can derive Γ̃ via

Cov(∆xm+1,∆xTm) = (1 + Γ̃(yn))−1Cov(f̃(xm)− (Γ̃(xm)− 1)∆xm + K̃(xm)ξn,∆xTm)
= (1 + Γ̃(yn))−1(f̃(yn)Cov(1,∆xTm)− (Γ̃(yn)− 1)Cov(∆xm,∆xTm)
+ K̃(yn)Cov(ξm,∆xTm))
= (1 + Γ̃(yn))−1(f̃(yn)0− (Γ̃(yn)− 1)Cov(∆xm,∆xTm) + K̃(yn)0)
= −(1 + Γ̃(yn))−1(Γ̃(yn)− 1)Cov(∆xm,∆xTm)

where we used that ξm represents white noise, i.e., Cov(ξm,∆xTm) = 0 holds. Hence, we
get

Γ̃(yn) = (Cov(∆xm,∆xTm)−Cov(∆xm+1,∆xTm))(Cov(∆xm+1,∆xTm)+Cov(∆xm,∆xTm))−1
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To derive the drift estimate we calculate

〈∆xm+1〉 = (1 + Γ̃(yn))−1(f̃(yn)〈1〉 − (Γ̃(yn)− 1)〈∆xm〉+ K̃(yn)〈ξm〉)
= (1 + Γ̃(yn))−1(f̃(yn)− (Γ̃(yn)− 1)〈∆xm〉+ K̃(yn)0)
= (1 + Γ̃(yn))−1(f̃(yn)− (Γ̃(yn)− 1)〈∆xm〉)

and exploit again the properties of the white noise, i.e., 〈ξm〉 = 0. This leads to

f̃(yn) = (1 + Γ̃(yn))〈∆xm+1〉+ (Γ̃(yn)− 1)〈∆xm〉

The noise amplitude needs, just as for the Euler-dLE, the most complicated calculation.

Cov(∆xm+1,∆xTm+1) = (1 + Γ̃(yn))−1Cov(f̃(xm)− (Γ̃(xm)− 1)∆xm + K̃(xm)ξm,
f̃(xm)T −∆xTm(Γ̃(xm)− 1)T + ξTmK̃(xm)T )((1 + Γ̃(yn))−1)T

= (1 + Γ̃(yn))−1(f̃(yn)Cov(1, 1)f̃(yn)T − f̃(yn)Cov(1,∆xTm)(Γ̃(yn)− 1)T

+ f̃(yn)Cov(1, ξTm)K̃(yn)T − (Γ̃(yn)− 1)Cov(∆xm,1)f̃(yn)T

+ (Γ̃(yn)− 1)Cov(∆xm,∆xTm)(Γ̃(yn)− 1)T − (Γ̃(yn)− 1)Cov(∆xm, ξTm)K̃(yn)T

+ K̃(yn)Cov(ξm,1)f̃(yn)T − K̃(yn)Cov(ξm,∆xTm)(Γ̃(yn)− 1)T

+ K̃(yn)Cov(ξm, ξTm)K̃(yn)T )((1 + Γ̃(yn))−1)T

= (1 + Γ̃(yn))−1(f̃(yn)0f̃(yn)T − f̃(yn)0(Γ̃(yn)− 1)T

+ f̃(yn)0K̃(yn)T − (Γ̃(yn)− 1)0f̃(yn)T

+ (Γ̃(yn)− 1)Cov(∆xm,∆xTm)(Γ̃(yn)− 1)T − (Γ̃(yn)− 1)0K̃(yn)T

+ K̃(yn)0f̃(yn)T − K̃(yn)0(Γ̃(yn)− 1)T

+ K̃(yn)Cov(ξm, ξTm)K̃(yn)T )((1 + Γ̃(yn))−1)T

= (1 + Γ̃(yn))−1((Γ̃(yn)− 1)Cov(∆xm,∆xTm)(Γ̃(yn)− 1)T

+ K̃(yn)Cov(ξm, ξTm)K̃(yn)T )((1 + Γ̃(yn))−1)T

Now, we can insert the width of the white noise Cov(ξm, ξTm) = 1 which leads to

K̃(yn)K̃(yn)T =(1 + Γ̃(yn))Cov(∆xm+1,∆xTm+1)(1 + Γ̃(yn))T

− (Γ̃(yn)− 1)Cov(∆xm,∆xTm)(Γ̃(yn)− 1)T

The Choleskey decomposition can be used to get K̃(yn). We note that it is possible to
reconstruct the noise found in the data by the Verlet-dLE via

ξm = K̃(xm)−1((1 + Γ̃(xm))∆xm+1 − f̃(xm) + (Γ̃(xm)− 1)∆xm)

A.3 Transformation of units
In the following, we will specify how to transform the unit system used in the dLE
framework to another one. First, we need to write down the Langevin equation

ẍ = kBT

M
dlnP (x)
dx

− Γ
M

ẋ+
√

2kBTΓ
M

ξ
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where we inserted F (x) = −kBT lnP (x). The quantities which have to be independent
of the used unit system are ẍ, ẋ, dlnP (x)/dx and ξ. Consequently, the three terms on
the right side of the equation need to be independent of the unit system as well.
Now, the conversion of units can be defined by the value of kBT . Assuming that kB,1T
defines the unit system we are starting in and kB,2T the unit system we want to transform
to, the factor

a = kB,2T

kB,1T
,

can be used to specify the unit conversion by

M2 = a · M1

Γ2 = a · Γ1

since this multiplications enforce the conservation of the three force terms in the Langevin
equation.
As example, we can use as starting unit system the dLE convention with kB,1T = 38 ps−1

at T = 300 K,M1 = 1 ps and Γ1 = 100 which we want to transform to kB,2T = 4.494
kJ/mol at T = 300 K. By using the equations above, we get M2 = 0.0656 g/mol and
Γ2 = 6.56 g/mol/ps in the new unit system.

Note that both unit systems considered in this example measure the time in ps. If the
time should be treated in units of, e.g., ns, all parameters which include the time need
to be transformed. This might depend on the used unit convention.

A.4 Details of MD simulations

A.4.1 MD simulation of NaCl

The GROMACS 4.6.7. force field was used [184]. 895 TIP3P water molecules [185] were
placed in a cubic box of 3 mm side length together with one Na+ and one Cl− ion.
The two ions were described by the Amber99 ion parameters [186] and the simulation
was integrated at a time step of 1 fs. The water constrained bonds and angles were
determined by the SETTLE algorithm [187], the van-der Waals interaction and particle
mesh Ewald [188] real space was cut off at a distance of 1 nm. The Parinello-Rahman
barostat [189] with isotropic pressure coupling was used to regulate the pressure to 1
bar. The coupling time was 0.5 ps and compressibility 4.5 · 10−5 bar. The reference
temperature of 293.15 K was preserved by the Bussi velocity rescaling thermostat [76]
with a coupling time of 0.2 ps. Before the simulation started, an equilibration of 1 ns was
done. Afterwards, a trajectory of 200 ns with a write out frequency of 100 frames/ps was
produced. Additionally, the simulation was extended to 1 µs to get a reliable reference
but here the saving time step was 1 frame/ps.

A.4.2 MD simulation of AIB9

The simulations were performed using the GROMACS program suite with the GRO-
MOS96 43a1 force field [16] and explicit chloroform solvent [190]. A leapfrog algorithm
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with a time step of 2 fs was used to perform the integration. Additionally, the particle-
mesh Ewald method for electrostatics with a minimal cutoff of 1.4 nm was applied [188]
and the bonds were constrained by LINCS [191], including a hydrogen atom. The Bussi
velocity rescaling thermostat [76] was used to preserve the temperature.

A.4.3 MD simulation of T4 lysozyme

The GROMACS package (version 4.6.7) [192] was used to perform the simulation em-
ploying the Amber ff99sb*-ILDN force field [186, 193, 194] and TIP3P water [185].
Following Hub and de Groot [24], the M6I mutant of T4L (PDB 150L [195] chain D)
was used and the residues 163 and 164 were omitted as they are not resolved in the
crystal structure. Based on a triclinic box with a NaCl salt concentration of 150 mmol
L−1, roughly 29400 atoms had to be considered in MD. The LINCS algorithm [196] con-
strained the bonds, including hydrogen, which enabled the usage of an integration time
step of 2 fs in the Verlet integrator. Electrostatic interactions were treated by Particle-
Mesh Ewald (PME) summation [197]. The cut-offs of neighbor search, Lennard-Jones
forces and the real space grid of PME were set to 0.12 nm. For preparation, a steep-
est descent energy minimization of T4L was performed in vacuo to remove sterically
unfavorable interactions. Afterwards, the solvation box was built and a second energy
minimization was done taking the solvent into account. The equilibration started with
a 100 ps NVT run with position restraints and the Bussi thermostat [76] at 300 K, fol-
lowed by a 1 ns NPT run using position restraints and the Berendsen barostat [77]. A
5 ns free NPT simulation was done afterwards, the last 4 ns were used to calculate the
averaged box volume. Then, a 10 ns free NVT simulation was performed. Finally, the
equilibrium simulation was performed with a write-out frequency of 1 frame/ps.

A.4.4 MD simulation of trypsin and Hsp90

The Amber99SB* force field [186, 193], was used to describe protein and ion interac-
tions. Water molecules were described with the TIP3P model [185]. Simulations were
carried out using GROMACS v2018 [147] in a CPU/GPU hybrid implementation. Pro-
tein protonation states were determined with propka [198]. Van der Waals interactions
were calculated with a cut-off of 1 nm, electrostatic interactions used the particle mesh
Ewald method [188] with a minimal real-space cut-off of 1 nm. All covalent bonds with
hydrogen atoms were constrained using LINCS [191]. After an initial steepest descent
minimization with positional restraints of protein and ligand heavy atoms, an initial 0.1
ns equilibration MD simulation in the NPT ensemble was performed using a time step
of 1 fs and positional restraints of protein and ligand heavy atoms. A temperature of
290.15 K was kept constant by the Bussi (v-rescale) thermostat [76], the coupling time
constant was set to 0.2 ps. The pressure was kept constant at 1 bar with the Berendsen
barostat [77], the coupling time constant was 0.5 ps. The equilibration was followed by a
second steepest descent minimization without restraints and a short 0.1 ns equilibration
MD simulation in the NPT ensemble.

The dcTMD calculations [42] were performed using the PULL code implemented in Gro-
macs employing the "constraint" option with a SHAKE implementation [199]. 200-400
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statistically independent start points of simulations were obtained by generating differ-
ent atomic velocity distributions after the 10 ns unbiased simulations, all corresponding
to a temperature of 290.15 K. After a preequilibration of 0.1 ns using parameters as
described above with positional restraints on protein and ligand heavy atoms and a con-
stant distance constraint of all simulation systems, constant velocity calculations were
performed with vc = 1 m/s covering a distance of 2 nm. Hereby, the barostat was
switched to the Parrinello-Rahman barostat [189]. The constraint pseudo-force fc was
written out each time step.

Trypsin-benzamidine:
Benzamidine parameters were derived using AnteChamber [200] and ACPYPE [201]
with atomic parameters deduced from GAFF parameters [202]. Atomic charges were
obtained as RESP charges [203] based on QM calculations at the HF/6-31G* level using
ORCA [204] and Multiwfn [205]. Trypsin (PDB ID 3PTB) [156] was put into a dodeca-
hedral box with side lengths of 7.5, 7.5 and 5.3 nm and it was solvated with 8971 water
molecules. 16 sodium and 25 chloride ions were added to obtain a charge neutral box
with a salt concentration of 0.1 M [155]. After the initial equilibration, an additional
10.0 ns unbiased MD simulation was added to get a converged protein structure. As
pulling coordinates, the distance between the center of mass of all benzamidine heavy
atoms and the one of the Cα atoms of the central β-sheet of trypsin was used.

Hsp90-inhibitor:
The parameters of the resorcinol inhibitor were taken from Ref. [162]. Here, inhibitor
parameters were generated using AnteChamber [200] and ACPYPE [201] with atomic
parameters derived from GAFF parameters [202] and AM1-BCC atomic charges [206,
207]. The solvated simulation boxes of the Hsp90-inhibitor complex are the same as in
[162] (compound 1j), which are based on the 2.5 Å X-ray crystal structure with PDB
ID 6FCJ [208]. Just as for trypsin, the distance between the center of mass of all ligand
heavy atoms and the one of the Cα atoms of the central β-sheet of Hsp90 served as
pulling coordinate.

A.5 T-boosting: Uncertainty of rate prediction
To get an idea of the uncertainties associated with T -boosting, we consider the waiting
time twait of some process of interest. We assume that twait is exponentially distributed,

P (twait) = 1
〈twait〉

e
− twait

〈twait〉 , (A.1)

where 〈twait〉 is a function of temperature T . In consequence, the expectation value t̄wait
is given by the mean of the distribution 〈twait〉 plus/minus the error of the mean

t̄wait(T ) = 〈twait(T )〉 ± 〈twait(T )〉√
N(T )

, (A.2)

where N(T ) denotes the number of recorded events.
By going to the dimensionless rate k = t0/〈twait〉 (where t0 represents some time scale,
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e.g., ns) and after using Gaussian error propagation to lowest order [209], we get

ln (k̄(T )) = ln (k(T ))± 1√
N(T )

. (A.3)

Considering that the rate expression behaves like k∝e−∆F/kBT (with transition barrier
∆F ), ln(k) depends linearly on 1/T , i.e.,

ln(k(T )) = a

T
+ b. (A.4)

Linear regression theory [209] provides estimates for a and b as well as uncertainties

σb =

√√√√∑i
N(Ti)
T 2

i

∆ (A.5)

and

σa =

√∑
iN(Ti)

∆ (A.6)

with

∆ =
∑
i

N(Ti)
∑
i

N(Ti)
T 2
i

−
(∑

i

N(Ti)
Ti

)2

, (A.7)

where Ti denotes a discrete set of temperatures at which simulations are performed.
Using error propagation, we can calculate the uncertainty of ln(k) at Tref = 300 K via

σln(k(Tref)) =
√(

σa
Tref

)2
+ σ2

b . (A.8)

This indicates for the error of the average waiting time

t̄wait(Tref) = 〈twait(Tref)〉 ± 〈twait(Tref)〉 · σln(k(Tref)). (A.9)

To get an idea of the quantitative scale of this uncertainty, we can imagine that we
performed 10 Langevin simulations of length tLE at different Ti (i = 0, ... , 9)

Ti = T0 + i

(
25 T0
Tref

)
K. (A.10)

The first three temperatures (T0, T1 and T2) are chosen such that we observe ≈ 102

transitions during the simulation time tLE. Additionally, we assume to collect 103 tran-
sitions at the subsequent three temperatures T3, T4 and T5 as well as 104 transitions for
T6, T7 and T8. For T9 we assume that we observed 105 transitions.
Considering the case of T0 = Tref = 300 K, the observed rate at 300 K is k = 102/tLE to
fulfill our assumptions above. Choosing tLE = 5 ms, this results in k(300K) = 1/50µs.
We get as the error of the rate σln(k(Tref)) = 7.7%.
Alternatively, assuming that we need to set T0 ≈ 450 K in order to achieve 102 transi-
tions, employing the boosting relation Eq. (3.43) and tLE = 5 ms, the observed rate at
300 K is k(300K) = 0.063 ms−1 with an error of 10.6%.
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Considering the Langevin simulations of trypsin described in Sec. 6.2, where we use T -
boosting at 13 temperatures from T ∈ [380, 900] K, the error at 300 K can be estimated
to be σln(k(Tref)) = 3.3%. For Hsp90, were we reach time scales of tens of seconds, we
obtain σln(k(Tref)) = 11.0% at 300 K based on Langevin simulations at 14 temperatures
from T ∈ [700, 1350] K.
As it is known that constraints lead to an overestimation of the friction [143] and con-
sidering that erroneous free energy estimations enter Eq. (6.11) in the exponent, we can
conclude that the extrapolation error due to T -boosting can easily be made negligible
in comparison to theses error sources.

A.6 Langevin modeling of NaCl

The following figure shows the distribution of the back-calculated noise ξ for different
value ranges of x at different time steps.
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Figure A.1: Noise distribution for different time steps. We see top left that the
expected Gaussian shape (black dots) of the noise distribution is found for
the dLE at δt = 10 fs. The different colors represent noise binnings at
different value ranges of x. We do not see any dependence on x. Top right,
it is shown that the noise determined by the rescaled dLE deviates from the
standard distribution. The noise at δt = 60 fs, shown bottom left, reveals
deviations from the expected distribution for small values of x, which goes
in line with the problems in reproducing the correct free energy via dLE at
this δt. The deviations increase at δt = 100 fs.
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A.7 Field estimates for AIB
The following figure shows the friction estimate Γ11 at different time steps.
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Figure A.2: Friction estimate. Γ11 binned in the x1-x2 plane for different time
steps. Shown are δt = 2 ps (top left), δt = 6 ps (top right), δt = 10
ps (middle left), δt = 20 ps (middle right), δt = 50 ps (bottom left) and
δt = 100 ps (bottom right).
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The following figure shows the friction estimate Γ12 at different time steps.
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Figure A.3: Friction estimate. Γ12 binned in the x1-x2 plane for different time
steps. Shown are δt = 2 ps (top left), δt = 6 ps (top right), δt = 10
ps (middle left), δt = 20 ps (middle right), δt = 50 ps (bottom left) and
δt = 100 ps (bottom right).
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The following figure shows the noise field estimate K11 at different time steps.
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Figure A.4: Noise field estimate. K11 binned in the x1-x2 plane for different
time steps. Shown are δt = 2 ps (top left), δt = 6 ps (top right), δt = 10
ps (middle left), δt = 20 ps (middle right), δt = 50 ps (bottom left) and
δt = 100 ps (bottom right).
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The following figure shows the noise field estimate K12 at different time steps.
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Figure A.5: Noise field estimate. K12 binned in the x1-x2 plane for different
time steps. Shown are δt = 2 ps (top left), δt = 6 ps (top right), δt = 10
ps (middle left), δt = 20 ps (middle right), δt = 50 ps (bottom left) and
δt = 100 ps (bottom right).
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A.8 Assignment dLE to states

Biswas et al. [73] provided a density-based clustering for the subset of 7.35 · 106 points.
We want to use this information to get a finer insight into the dynamics estimated by
the dLE, i.e., we want to consider single transitions like rrrrr ↔ lllll. To this end, we
have to assign the dLE trajectories to the various states. This was done in the following
way.

• The system space is binned into multiple coarse bins, each coarse bin is again
partitioned in smaller bins.

• For each coarse bin, the reference trajectory is used to determine the dominate
state per fine bin in the following way:

– If one state has the most entries in the fine bin, it gets this bin.

– If two states have the same number of entries, the bin is assigned to the
"barrier", i.e., the bin is not assigned to a special state but to a intermediate
region.

• If the coarse bin gets not a single entry at all, it is completely assigned to the
"barrier"

• In case there are entries in the coarse bin, empty fine bins are assigned in the
following way:

– Each empty fine bin checks whether one of his direct neighbors is already
assigned. If this is the case, it is assigned to this state or the "barrier".

– If two direct neighbors are assigned to different states, the empty bin is as-
signed to the "barrier"

– After having checked all empty bins, the checking is repeated by using the
bins assigned in the last round as well.

– This checking is repeated until all empty bins were assigned.

• Finally, the trajectory which should be assigned to states gets a state trajectory
by using the assignment of the fine bins.

Out of the 102 states found by the clustering [73], only the first 42 states were taken,
the rest of the states was assigned to the "barrier". This was done to be sure that the
considered states have a reasonable sampling. By partitioning the space in 45 = 1024
coarse bins and each coarse bin in 155 = 759375 finer bins, it was possible to assign 87 %
of the dLE points to states. For the binned dLE, 87 % of the dLE points were assigned
to states as well.
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A.9 Additional autocorrelations of the rescaled dLE for Aib9
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Figure A.6: Autocorrelations of remaining coordinates. The dLE estimates match
the MD for all three coordinates x3 (top left), x4 (top right) and x5 (bottom).
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A.10 T4 lysoyzyme: recrossing study for coordinates from
contact PCA
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Figure A.7: Definition of states, state surroundings and barrier. Top right, we
see the free energy projected on the two PCs y1 and y3. The other three
figures are related to the counting of recrossings. Top right, the state cores
are shown, bottom left the state surroundings and bottom right the barrier
region.
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Figure A.8: Definition of states, state surroundings and barrier. Top right, we
see the free energy projected on the two PCs y2 and y3. The other three
figures are related to the counting of recrossings. Top right, the state cores
are shown, bottom left the state surroundings and bottom right the barrier
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A.11 T4 lysoyzyme: Chapman-Kolomogorov test
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Figure A.9: Chapman-Kolmogorov test for the MSM on the two-dimensional
system description. On the left we see the uncored and on the right the
cored data. The first line shows state 1, the second line state 2, the third
line state 3 and the fourth line state 4.
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A.12 T4 lysozyme: field estimates for the rescaled dLE model
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Figure A.10: Friction estimate of the rescaled dLE. Shown are Γ11 (top left), Γ21
(top right), Γ21 (bottom left) and Γ22 (bottom right) estimated by the
rescaled dLE.
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Figure A.11: Estimates of the noise amplitude of the rescaled dLE. Shown are
K11 (top left), K21 (top right), K21 (bottom left) and K22 (bottom right)
estimated by the rescaled dLE.

A.13 dLE trajectories for the enforced dissociation of sodium
chloride
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Figure A.12: dLE trajectories. Exemplary dLE trajectories for C = 100 kJ/(mol
nm2)) (left) and C = 1000 kJ/(mol nm2)) (right) are shown. Here, the
standard dLE was applied to the MD data.
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A.14 Parameters of per-averaging for the hierarchical model
system

The following parameters were used to pre-average the data for the hierarchical model
system in Sec. 7.2.1:

• s = 103 coarse bins

• Nmax = 104 defines the variability of the adaptive averaging

• ωmin = 10−4 defines the highest resolution used mainly in the minima

• ωmax = 10−3 defines the minimal resolution used mainly on the barriers

A.15 Noise test for nucleation of hard spheres
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Figure A.13: Noise test for dLE model of hard sphere nucleation. Shown are the
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the dLE model in red compared to the expectation in black (bottom).
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