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Abstract

Allostery plays a fundamental role in regulatory biological processes. It describes the phenomenon that
a functional change at one site of the protein is triggered by the binding of a ligand to another, distant
site. It yet remains unclear what forces drive the underlying mechanisms, and in particular whether the
mechanisms are of structural or dynamical nature. Here we study molecular dynamics simulations of
the PDZ2 domain, in which the binding of a ligand causing the allosteric transition is mimicked by an
azobenzene photoswitch.
The allosteric transition captured in a vast ensemble of equilibrium and non-equilibrium trajectories,
covering more than 400 𝜇s, is investigated by applying a state-of-the-art workflow. After employing a
dimensionality reduction, the low dimensional space is partitioned into meaningful metastable clusters
by density based clustering. Subsequent Markov state modeling allows to approximate the dynamics of
the protein by memory-less jumps between those metastable conformations. We introduced iterative
dynamical coring as a novel method for the correction of artefacts resulting from dimensionality reduc-
tion which significantly improves the validity of the Markov state model. The resulting Markov state
model is self-consistent and predicts that the allosteric transition obeys an order-disorder-order pat-
tern. Furthermore, it is suggested that allostery is neither driven exclusively dynamically nor exclusively
conformationally but is rather governed by an interplay of both.
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1. Introduction

...if we were to name the most powerful assumption of all, which leads one on and on in an
attempt to understand life, it is that all things are made of atoms, and that everything that
living things do can be understood in terms of the jigglings and wigglings of atoms.

Richard P. Feynman

Derived from the Greek word πρωτειος “proteios” which translates as “standing in front”, proteins are
biology’s workhorse molecules. It was Gerrit Mulder, a Dutch physician, who discovered proteins and
foretold their crucial importance in the early 19th century. Even though there were several important
steps and advances in protein research, such as e.g. the accidental discovery of haemoglobin by Friedrich
Ludwig Hünefeld in 1840, the detailed structure of a protein was revealed for the first time in the
year 1958 when J. Kendrew studied myoglobin by X-ray crystallography [1]. This groundbreaking
experimental work was awarded with the Nobel Prize in Chemistry 1962.
Over the next years, more and more proteins with different structures were discovered which formed
the dogma that the function of a protein is strictly governed by its structure which is encoded in the
proteins amino acid sequence and ultimately shaped in the folding process:

Sequence→ Structure→ Function

It was almost 200 years after the firstmention of a protein when Platt et al. showed that even the smallest
modifications in the structure of a protein may lead to an entirely different function [2]. This was a first
hint that there must be something crucial in the proteins nature which was overlooked before. Soon
the protein paradigm was extended by dynamics, as this was identified to be the missing link:

Sequence→ Structure→Dynamics→ Function

Since then, experimental techniques have become more and more elaborated so that they now can
not only provide an exceptionally informative picture of the structure of proteins (nuclear magnetic
resonance spectroscopy, X-ray crystallography or circular dichroism spectroscopy) but also pictur-
ing dynamical information (ultrafast infrared spectroscopy or time depended X-ray via free electron
lasers) [3, 4].
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1. Introduction

On the theoretical side, Molecular Dynamics (MD) simulations have emerged as another effective ap-
proach to tackle protein dynamics due to rapid advances in computer technology. MD simulations are
a very powerful tool in providing the atomistic picture of dynamics with desirable small temporal and
structural resolution by solving Newtons equations of motion for all atoms of a protein.
This advanced techniques on both experimental and theoretical side have led to an ever deeper under-
standing of protein dynamics, especially in the field of protein folding [3, 5, 6]. In order to execute their
vital cell processes, proteins need to fold in their unique structure. Understanding this phenomenon is,
besides academic interest for knowledge, of utmost interest for medicine since (mis)folding is promi-
nently involved in neurodegenerative diseases such as Alzheimer’s disease or Huntington’s chorea [7].
Besides, misfolding of proteins also inhibits their function which e.g. prevents them from fulfilling their
duty of repairing damaged snippets of DNA potentially leading to abnormal cell growth (cancer) [8].
At the same time, hopes are high that understanding protein dynamics can accelerate and catalyze state
of the art drug research. At the time of writing this thesis, scientists are simulating potentially drug-
treatable protein targets, so called spike proteins orDemogorgons, of the SARS-CoV-2 virus (responsible
for the COVID-19 pandemic). They are using a network of private and scientific computers with a
total computational power of currently more than 2.4 exaFLOPs (2.4 ⋅ 1018 floating point operations
per second) and still counting, which made it the worlds first exaFLOPS computing system [9]. In
terms of computation power, it easily dwarfs the worlds top 10 best supercomputers combined.

Allostery

Over several decades scientists, in experimental and theoretical work, have developed a well-established
picture of protein folding and unfolding. However, an understanding on such a detailed level has not
yet been achieved for allostery. Allostery (ἄλλος, στερεὀς =̂ other site) describes a universal phenomenon
whereby a ligand binds to the allosteric site of a protein. Thereby, a conformational change at a distant
active side of the protein through alteration of conformation and/or dynamics is triggered [10] (see
Fig. 1.1).
On the very basic level, allostery is related to the protein itself, but its fundamental importance arises
on the cellular level by affecting different phenomena such as signal transport, transcriptional regulation

Figure 1.1.: Simple scheme of allostery: A ligand (blue) docks to the allosteric site (orange) of the protein (red)
which triggers a conformational change at a distant side in the protein.
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or metabolism [11]. It takes place in all dynamic proteins and was identified as being responsible for a
number of diseases arising due to changes in the allosteric binding site or by creating sites for allosteric
posttranslational modifications [12]. This makes it a promising candidate for paving the way for
innovative drug research and design as well as a deep understanding of diseases related to allostery [12].
In contrast to protein folding, the relatively small structural and/or dynamical changes makes it very
difficult to identify the underlying principles of allostery. Originally, the interpretation of allostery as a
hierarchy of several structural changes prevailed. However, more recent studies point to the fact that an
allosteric transition can be induced with very little changes in the structural conformation shifting the
focus mainly onto the dynamics of the protein [13, 14]. Despite several decades of ongoing debate the
nature of allostery remains an open question [15]which also shows the need for a deeper understanding
of the underlying mechanisms on a molecular level.

PDZ2

Concerning the research on allostery, PDZ (PSD9 5/Disc large/ZO) domains in particular have proven
to be suitable because they are relatively small compared to other allosteric proteins and are widespread
in a large variety of proteins. Binding to the C-terminus of their targets, they are involved in a wide
range of signal transduction pathways in the human body [10].
Combining state of the art experimental and theoretical techniques (NMR and IR spectroscopy, as well
as MD simulations), Buchli et al. studied an allosteric transition in a photoswitchable PDZ2 domain.
Here, an azobenzene photoswitch was linked covalently across the allosteric site, which mimics the
binding of a ligand [16]. Applying a laser pulse with a certain wavelength, the conformation of the
PDZ2 protein was switched from its Cis to Trans conformation and the allosteric transition was this
way enforced.
S. Buchenberg et al. provided additional MD simulations of the same system, which showed good
agreement with the experimental findings [17]. Those simulations were later extended to a total length
of 408 𝜇s by A. Gulzar. It is this data set, which we investigate within this thesis.

Markov StateModels

Simulating such extensively long trajectories is computationally very expensive and modern computer
systems—due to their processor structure—are far better suited for the computation of multiple short
trajectories instead of a single large trajectory. Nevertheless, one is usually interested in the full global
dynamics instead of local information in the single trajectories.
Markov State Models (MSMs) represent an effective remedy as they can combine several separate,
only locally converged trajectories and thereby allow predictions of the global dynamics [18–25]. The
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1. Introduction

transition matrix, representing one of the main pillars of the MSM, approximates the time evolution of
theMDdata asmemory-less jumps betweenmetastable states in the conformational space of the protein.
This does the trick of extracting global dynamical and structural information out of an ensemble of
locally converged trajectories and therefore allows us to understand global mechanisms of the protein
by combining only local information. In other words, we can exploit the structure of suchMSMs to
overcome the bottleneck of modern computer systems and shed light on long time scale dynamics only
by using many predictions on much shorter time scales.

In this thesis

The aim of this thesis is to predict the complete nonequilibrium transition mechanism of the Cis→
Trans allosteric transition of PDZ2 by constructing a MSM on the data set mentioned above. We hope
to gain insights about the timescales involved and to understand the most important pathways describ-
ing the transition in order to learn more about the mechanisms that govern this process. Last but not
least we seek to put our findings into perspective in order to classify which of the two theories about
allostery—conformational or dynamical—is better supported by our data.

After giving a short introduction into the underlying theory and methods in Ch. 2, we continue
with the extraction of the proteins internal motion from the MD data by selecting suitable contact-
distances in Ch. 3. For an effective description of the dynamics in terms of the protein’s metastable
conformations—so called microstates— it is inevitable to project the internal coordinates onto relevant,
low dimensional reaction coordinates. During this process, it can happen that particularly frames on
the boundaries between microstates are incorrectly assigned. As a remedy to this problem we present
iterative dynamical coring in Ch. 4, an advancement of dynamical coring [26] and apply it to the data
after we investigated and validated its effect. Also in Ch. 4, we will construct aMSM in order investigate
the mechanisms involved in the Cis→Trans transition. In Ch. 5, we confirm and substantiate the
results by using a machine learning decision tree to identify the most important contact-coordinates
and then establishing another MSM on the basis of these findings. Improved input coordinates will
allow us to analyze the nonequilibrium transition between Cis and Trans in detail. In the last chapter,
Ch. 6, we conclude this thesis by discussing our findings, the problems we were faced with and point
out which new developments in the future could facilitate Markov modeling.
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2. Theory &Methods

A protein is a set of coordinates.

Andreas P. Heiner

In order to aid the readers understanding of this topic, we will first introduce the allosteric system under
study and then move on to give a short introduction to the theory which is required for tackling the
decipherment of the allosteric transition by studying molecular dynamics simulations.

Allostery is indispensable for processes occurring in living cells [27] and plays a fundamental role in all
dynamical proteins [12]. Due to its complexity and its impact which is not only limited on the protein
itself but affects the cellular level as well, an attempt is made to trace the origin of allostery back to a
single allosteric domain.
The system investigated here, namely a modified photoswitchable PSD9 5/Disc large/ZO-1 (PDZ)
domain [28, 29] (see Fig. 2.1), performs its general function by clustering different proteins. For

C-terminus

N-terminus

α1

α2

β1

β2

β3 β4

β5

β6

Figure 2.1.: Cartoon representation of the PDZ2-S domain in Cis-conformation. PDZ2-S has two 𝛼-helices
marked in red and 6 𝛽-sheets (marked in blue). The loops are in grey color and the azobenzene
photoswitch connecting the residue 22with residue 7 7 is marked in yellow.
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2. Theory &Methods

Table 2.1.: The residues of the PDZ2-S domain forming metastable structures.
Residue 7–13 21–24 36–41 46–50 58–62 65–66 7 4–81 85–9 1
Structure 𝛽1 𝛽2 𝛽3 𝛼1 𝛽4 𝛽5 𝛼2 𝛽6

this purpose, it binds to other proteins involved in multi-domain modular enzymes with their C-
and N-terminus what mediates a protein network. Doing so, PDZ domains regulate multiple signal
transduction pathways [30].
Within this thesis, the PDZ2 domain occurring in the human tyrosine phosphatase 1E (hPTP1E) is
investigated. It is a small 9 6-residue protein and, besides other things, regulates cell growth and apoptosis
in breast cancer cells [31]. PDZ2 folds into a metastable structure of two 𝛼-helices and six 𝛽-sheets (see
Tab. 2.1 and Fig. 2.1), with the 𝛽2-sheet and 𝛼2-helix forming a binding groove for the ligand. Buchli
et. al mimicked the binding of a ligand by covalently linking a photoswitchable azobenzene molecule to
the residues 22 and 7 7 since the length of the photoswitch here closely matches the C𝛼-distances which
are occupied in the free and bound state of the protein [16]. This modification of the PDZ2 domain is
referred to as PDZ2-S, but we will simply call it PDZ2 for reasons of convenience and call the PDZ2
without azobenzene photoswitch “wild-type” PDZ2. By the stimulus of a femtosecond laser pulse the
conformation of the photoswitch (and thus of the protein) can be changed from its Cis conformation
(free state) to the Trans conformation (bound state) and vice versa.
Interestingly, the removal of a short 𝛼3-helix close to the C-terminus reduced the affinity of binding a
ligand by a factor of 21 [29]. Therefore PDZ domains are a very promising candidate to study the role
of dynamics in allostery as this 𝛼3-helix is located well outside of the ligand binding site. This indicates
that fast side chain dynamics are the main driving force for allosteric transitions within PDZ domains.
As mentioned above, we aim to trace back the origin of allostery to a single allosteric protein which
requires very information about the motion of every single atom—a task well suited for molecular
dynamics simulations.

2.1. Molecular Dynamics Simulation

MD simulations are a widely used computer simulation technique which allows examining the atomic
spatiotemporal details of complex systems such as e.g. proteins [32–34].
Since MD data contains the time evolution of every single atom of the molecule under study in phase
space, MD simulations can be consulted to clarify question which can no longer be addressed in
experiments due to their restrictions in temporal and/or spatial resolution.
Given the structure of a protein (often known from crystallization experiments), a simulation box with
periodic boundary conditions is set up which contains the investigated protein/molecule and a solvent
(e.g. water). Within this simulation box, Newtons equations of motion for all𝑁 atoms (combined in
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2.1. Molecular Dynamics Simulation

the position vector of all atoms𝑅𝑅𝑅 = (𝑟𝑟𝑟1, ..., 𝑟𝑟𝑟𝑖), 𝑖 = 1, ..., 𝑁) are solved by numerical integration thus
yielding the trajectory of the protein

F𝑖 = ∇∇∇𝑖[𝑉
bonded(𝑅𝑅𝑅) + 𝑉 non-bonded(𝑅𝑅𝑅)]. (2.1)

The interactions between all atoms of the protein/molecule of interest are combined in the two force
fields 𝑉 bonded and 𝑉 non-bonded, which describe local interactions and far-ranging interactions respec-
tively [35].
In the bonded potential 𝑉 bonded, bond stretching (𝛥𝑟 𝑏𝑖𝑗), bond bending (𝛼) as well as bond rotations for
the proper (𝜙) and improper (𝜔) dihedrals are summarized.

𝑉 bonded = ∑ 𝐾 b(𝛥𝑟 b − 𝛥𝑟 eq)2⎵⎵⎵⎵⎵⎵⎵
bond stretching

+ ∑ 𝐾𝛼[cos(𝛼) − cos(𝛼eq)]2⎵⎵⎵⎵⎵⎵⎵⎵⎵
bond bending

+ ∑ {𝐾𝜙[1 + cos(𝑚𝜙 − 𝜙 eq)]2 + 𝐾𝜔(𝜔 − 𝜔eq)2}⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
dihedrals

(2.2)

The non-bonded potential 𝑉 non-bonded consists of the Coulomb interactions of two atoms, 𝛥𝑟𝑖𝑗 apart,
with the charges 𝛿𝑖 and 𝛿𝑗 and the Lennard-Jones potential:

𝑉 non-bonded = ∑
𝑖𝑗

1
4𝜋𝜖0

𝛿𝑖𝛿𝑗
𝛥𝑟𝑖𝑗⎵

Coulomb

+ ∑
𝑖𝑗
𝜖𝑖𝑗[(

𝛥𝑟m
𝛥𝑟𝑖𝑗

)
12
− 2(

𝛥𝑟m
𝛥𝑟𝑖𝑗

)
6
]

⎵⎵⎵⎵⎵⎵⎵⎵⎵
Lennard Jones

. (2.3)

The 𝐾s in 𝑉 bonded represent force constants which are typically either determined in experiment or
calculated from semi-empirical quantum mechanics calculations. Same applies also for 𝜖𝑖𝑗, which
denotes the depth of the potential well and 𝛥𝑟m which denotes the distance at which the Lennard-Jones
potential reaches its minimum. Equations (2.2) - (2.3) show one possible example [35] for the force
fields, but depending on the application, different expressions and force constants for the force fields
have to be considered.

MD Simulation Details for PDZ2

For the MD simulations of the allosteric transition in PDZ2, GROMACS [36]was used. The Amber
ff9 9SB*-ILDN force field [37–40]was applied in combination with the rigid TIP3P water model [41]
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2. Theory &Methods

and the temperature was set to room temperature, i.e. 𝑇 = 300K. In order to integrate Newtons
equations of motion, a Leapfrog integrator was used. Frames were written out with a frequency of 50
frames per nanosecond.
S. Buchenberg has laid the foundation stone with 7 equilibrium trajectories of a length of 2.5 𝜇s for
both Cis and Trans [17]. Wewill see later, that these 2.5 𝜇s trajectories did mostly not yet reach their
equilibrium state and feature little overlap. Due to the latter issue, A. Gulzar extended the simulations
of 6 out of 7 trajectories to a length of 10 𝜇s each.
To provide a complete picture of the allosteric transition, S. Buchenberg set up 100 1.1𝜇s nonequilib-
rium trajectories for the transition between Cis and Trans. Here, nonequilibrium trajectories means
that the simulations were initiated in a nonequilibrium conformation but then propagated under equi-
librium conditions. As the great majority of them did not reach their Trans destination, 20 of them
were elongated to a total of 10 𝜇s each [42].

The total data of the PDZ2-S allosteric transition includes simulations of the total length of 20400112
frames which corresponds to a total simulation time of 408 𝜇s.

2.2. Internal Coordinates

The data obtained from the MD simulations involves Cartesian coordinates of all atoms of the protein
and its solvent. One needs to discriminate the internal motion of the proteins, which one is interested
in from the global motion of the protein through the solvent in the simulation box. The latter is usually
not of interest.
Sticking with the Cartesian coordinates, a mixing between internal and global motion is generally
inevitable [25]. To circumvent this problem, the coordinates of the protein can be transformed to a
set of internal coordinates. A number of options for the internal coordinates are available and it was
shown that the choice drastically influences the outcome of the dimensionality reduction and therefore
the state definition of the MSM [43].

In this thesis, contact distances are used. Typically, one refers to a contact if the distance between two
residues falls below 4.5Å as this indicates the distance where a hydrogen bond is usually formed. It was
recently shown that native contacts, that is, contacts which are formed in the folded state of the protein,
play a major role in protein folding [44]. Of course there are more types of contacts beside hydrogen
bonds, which is why the distance cutoff range extents from around 4Å to 8Å in the literature [43].
Here, we consider a contact as formed if the distance |𝑟𝑟𝑟 | between the closest lying atoms of each residue
𝑖 and 𝑗 falls below 4.5Å, i.e.:

r𝑖 ,𝑗 = min
𝑘,𝑙
(|𝑟𝑟𝑟𝑖 ,𝑘 − 𝑟𝑟𝑟𝑗 ,𝑙|) ≤ 4.5Å. (2.4)
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2.2. Internal Coordinates

The indices 𝑘 and 𝑙 run over all atoms (hydrogen atoms included) of the selected residue pair and two
examples are shown in Fig. 2.2.

r

r

Figure 2.2.: Example of two distances between the residues 22 and 7 7 and the residues 29 and 33. The protein
shown is PDZ2.

For a complete coverage of a protein, one would need 𝑛2 distances, where 𝑛 denotes the number of all
residues present in the protein. This would make it numerically very expensive and thus not feasible for
large systems like PDZ2. However, it is sufficient to include only relatively few distances as they are
mostly highly correlated [43]. The distances can be either chosen intuitively by hand or being preselected
by machine learning algorithms [45].
Apart from contact distances, other internal coordinates can also be considered, such as e.g.

• C𝛼-distances. In case one is not interested in sidechain dynamics, C𝛼-distances can be used as
internal coordinates. C𝛼-distances describe the distance between the C𝛼-atoms in the backbone
of the proteins and as well as contact distances they describe relative motion within the protein.
Being an effective way to reconstruct the proteins backbone, sufficiently many C𝛼-distances are a
helpful tool for tackling protein folding [43].

• reciprocal contact- or C𝛼-distances. By the usage of reciprocal distances, one can shift the focus
from large scale motions towards smaller distances where the formation of contacts occurs [46].

• dihedral angles. In contrast to distance based coordinates, dihedral angles represent “local”
coordinates of the protein instead of the “global” distances. Dihedral angles (𝜙𝑖, 𝜓𝑖) describe the
conformation of the protein in terms of the rotation of its backbone [47, 48]. This works well
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2. Theory &Methods

for biomolecules such as proteins since bond length and angles are usually not subject to major
changes.
Similar to C𝛼-distances, sidechain dynamics can not be investigated directly with dihedral angles.
It has been found that although dihedral angles allow a high resolution of metastable states,
they require more principal components to account for the same cumulative flux compared to
distances [43].

2.3. Principal Component Analysis

After transforming the data obtained from the MD simulations to internal coordinates, the data is
usually given in form of a𝑚 × 𝑛matrix, where𝑚 denotes the number of sampled timesteps and 𝑛 is
the amount of chosen input coordinates 𝑟𝑟𝑟 = (𝑟1, ..., 𝑟𝑛).
For a meaningful statistical analysis of such vast data and to make it accessible for MSM, we use a
clustering approach which uses a free energy 𝛥𝐺 estimate [49]

𝛥𝐺(𝑟𝑟𝑟 ) = −𝑘B𝑇 ln[𝑃 (𝑟𝑟𝑟 )]. (2.5)

𝑘B represents the Boltzmann constant, 𝑇 denotes the temperature and 𝑃 (𝑟𝑟𝑟 ) is the population density
at the coordinate 𝑟𝑟𝑟 [see Eq. (2.11)]. However, such an approach only works well for relatively well
covered population densities 𝑃 (𝑟𝑟𝑟 ). Obviously, convergence can not be expected for ∼ 10 7 data points
in 𝑛 ≈ 102–103 dimensions since the full space is only sparsely sampled (curse of dimensionality).
Fortunately, for proteins one can find that most of the dimensions used for the description of the trajec-
tory are insignificant. Nonlinear couplings in the protein lead to cooperative effects which drastically
reduce the effective dimension deff, i.e. the number of dimensions needed to provide a accurate picture
of the MD trajectory in a reduced space [25].
Using different approaches for the dimensionality reduction of the data, ranging from deep neural
networks [50, 51] to classical methods like principal component analysis (PCA) [52] and several mod-
ifications thereof [53–55], one typically ends up with around deff ≲ 10 dimensions which cover the
systems essential dynamics [25, 56, 57]. Eventually, all of them increase the reliability of the population
density 𝑃 (𝑟𝑟𝑟 ) significantly.
Within this work, we use PCA, a linear transformation which maximizes the variance and therefore
yields a high-resolution structural picture of the protein.
The covariance matrix describes the correlated motion of the system under study

Cov(𝑟𝑖, 𝑟𝑗) = ⟨(𝑟𝑖 − ⟨𝑟𝑖⟩)(𝑟𝑗 − ⟨𝑟𝑗⟩)⟩ = ⟨𝑟𝑖𝑟𝑗⟩ − ⟨𝑟𝑖⟩⟨𝑟𝑗⟩, (2.6)

where ⟨...⟩ denotes the average over the sampled data. Considering distances, we are often interested
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2.3. Principal Component Analysis

in relative differences rather than absolute ones. In this case we use the correlation matrix instead of the
covariance matrix:

Corr(𝑟𝑖, 𝑟𝑗) =
Cov(𝑟𝑖, 𝑟𝑗)
𝜎𝑟𝑖𝜎𝑟𝑗

, (2.7)

where 𝜎𝑟𝑖 denotes the standard deviation of 𝑟𝑖. Diagonalization of (2.6) [or (2.7)] yields 𝑛 eigenvectors
𝑣𝑣𝑣(𝑖) and their corresponding eigenvalues 𝜆𝑖, which indicate the direction and variances of the principal
motion (see Figure 2.3)

C ⋅ 𝑣𝑣𝑣(𝑖) = 𝜆𝑖 𝑣𝑣𝑣
(𝑖). (2.8)

By projecting the input data 𝑟𝑟𝑟 onto the eigenvectors

𝑥𝑖 = 𝑣𝑣𝑣
(𝑖) ⋅ 𝑟𝑟𝑟, (2.9)

we obtain the principal components 𝑥𝑖 which describe the data along the directions of maximum
variance.
After sorting the principal components by descending eigenvalues, the first principal component
features the largest possible variance with each subsequent component featuring the highest possible
variance that is orthogonal to its predecessors ⟨𝑥𝑖𝑥𝑗⟩ = 𝛿𝑖𝑗⟨𝑥

2
𝑖 ⟩.

A high often indicates dynamics of paricular interest, which is why truncating the principal components
after the first 𝑑 ′ dimensions yields in good approximation a low dimensional description of the systems

x

x

Figure 2.3.: Two dimensional example of the PCA. The arrows represent the two principal components 𝑥1 and
𝑥2 resulting from the diagonalization of the covariance matrix Cov(𝑥, 𝑦). 𝑥1 and 𝑥2 indicate the
directions of maximum variance in the data (under the condition that they are orthogonal to each
other).
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2. Theory &Methods

essential dynamics. Following this logic, all other dimensions can be neglected, as their motion drifts
more and more towards Gaussian noise. In reference to the Brownian motion, these PCs are often
called “bath”. The set of chosen principal components𝑥𝑥𝑥 = (𝑥1, ..., 𝑥𝑑 ′) is usually referred to as collective
variables (CVs).
By summing up the corresponding eigenvalues (cumulative fluctuation)∑𝑑 ′

𝑖 𝜆𝑖, we know howmuch
percent of the total variance is covered. However, sometimes it is wiser to choose the 𝑑 ′ components
not only by decreasing eigenvalues but by some criteria of interest such as e.g. a non-harmonic free
energy profile or well distinguishable dynamics in this PC.

2.4. Robust Density-Based Clustering

The application of the PCAwith subsequent choice of the most interesting PCs yields a low dimen-
sional representation of the initial 3𝑁 dimensional CartesianMD data featuring the most important
underlying processes in our data set. In this low dimensional coordinate space 𝛤, the system under study
can be described by some stationary density 𝑓0. Usually we are mostly interested in dynamics, which we
can describe for an initial configuration 𝑥𝑥𝑥(𝑡 = 0) = 𝑥𝑥𝑥0 and 𝑥𝑥𝑥 = (𝑥1, ..., 𝑥𝑑 ′)with the formal solution
𝑥𝑥𝑥(𝑡) = 𝛷 𝑡𝑥𝑥𝑥0 of certain Hamiltonian equations of motion, where𝛷 𝑡 denotes the flow [58].

Later in MSMs, we consider the conditional transition probability 𝑝 between two metastable confor-
mations of the protein, that is two subsets of the conformation space 𝑆1 ∈ 𝛤 and 𝑆2 ∈ 𝛤

𝑝(𝑆1, 𝑆2, 𝑡 ) =
1

∫𝑆1 𝑓0(𝑥𝑥𝑥) d
𝑑 ′𝑥

∫
𝑆1
𝜒𝑆2(𝛷

𝑡𝑥𝑥𝑥)𝑓𝑜(𝑥𝑥𝑥) d
𝑑 ′𝑥, (2.10)

where 𝜒𝑆 denotes the characteristic function of the set 𝑆 ∈ 𝛤, which means 𝜒𝑆(𝑥𝑥𝑥) = 1 for 𝑥𝑥𝑥 ∈ 𝑆 and
𝜒𝑆(𝑥𝑥𝑥) = 0 otherwise.
MSMs are based on the assumption that a separation of timescales between fast interstate fluctuations
and slow interstate transitions exists and they are therefore very effective as they model the dynamics of
the system by jumps between those states. Thus, we aim to identify some metastable subsets 𝑆𝑖 ∈ 𝛤
which feature a high probability to stay within itself during the observed time 𝜏, that is 𝑝(𝑆𝑖, 𝑆𝑖, 𝜏 ) ≈ 1.
Different approaches for clustering the data into a set of such (metastable) subsets are available. The
most widely used cluster algorithm is k-means [59],which is relatively simple in a sense that it performs
a Voronoi partitioning of the whole data set. A chosen number 𝑁k of cluster centers is randomly
distributed within the data set and frames (a frame is one data point in this 𝑑 ′-dimensional space, i.e.
𝑥𝑥𝑥(𝑡) = (𝑥1(𝑡), ..., 𝑥𝑑 ′(𝑡)) are subsequently assigned to the nearest cluster center by minimizing the sum
of squared distances between them and the center. The position of the cluster center is rearranged
iteratively until no further minimization of the sum of squared distances is achievable.
However, this method has several downsides because it is e.g. not self consistent as the input parameter
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2.4. Robust Density-Based Clustering

𝑁k is not a consequence of the underlying data, but rather a choice of the user. k-means is also not
deterministic as the𝑁k cluster centers are initially randomly distributed in the coordinate space. Even
more problematic is the fact, that the clusters resulting from k-means do not cut the states at their
energy barriers since they are cut purely geometrical by Voronoi partitioning.
Density-based clustering methods are an elegant remedy to these problems as

• they cut the states at their energy barriers,

• apart from the desired final number of microstates, they do not need additional input parameters
and are therefore quasi self-consistent and

• they are deterministic.

One of these techniques, namely robust density-based clustering, developed by Sittel and Stock [49], is
used in this work:
Its basic idea is to construct a free energy landscape 𝛥𝐺(𝑥𝑥𝑥 ) [see Eq. (2.11)] [60] based on the local free
energy estimates of each frame and subsequently identify metastable clusters as states which are well
separated by their local energy barriers (see Fig. 2.4)

𝛥𝐺(𝑥𝑥𝑥) = −𝑘B𝑇 ln(𝑃𝑅(𝑥𝑥𝑥)/𝑃
max
𝑅 ), (2.11)

where 𝑃 max
𝑅 = max𝑡(𝑃𝑅[𝑥𝑥𝑥(𝑡)]) is the maximum local neighborhood population. In a first step, the

neighborhood population for every frame at point 𝑥𝑥𝑥′ is determined by simply counting the number of
frames which are located within a 𝑑 ′-dimensional hypersphere with the radius𝑅 around 𝑥𝑥𝑥′

𝑃𝑅(𝑥𝑥𝑥
′) =

𝛮
∑
𝑚=1

𝛩[𝑅 − 𝑑(𝑥𝑥𝑥𝑚, 𝑥𝑥𝑥
′)]. (2.12)

Here,𝛩[] is the Heaviside step function, which equals 1 if the frame lies within the hypersphere and 0
otherwise. 𝑑(𝑥𝑥𝑥,𝑥𝑥𝑥′) = √∑𝛮

𝑛=1(𝑥𝑛 − 𝑥
′
𝑛)2 denotes the Euclidean norm in the𝑁-dimensional space. For

the hypersphere radius𝑅, Nagel et al. showed that𝑅 = 𝑑lump (see below for 𝑑lump) empirically works
very well for various model systems as 𝑑lump represents a lower bound for R because it effectively limits
the resolution of the clustering [26].
By repeating this procedure, a local free energy estimate can be assigned to every single frame through
Eq. (2.11). Sorting the frames by their free energy from lowest to their highest value, the free energy
landscape is constructed. First, a free energy cutoff is set to a very small value (e.g. 𝛥𝐺cutoff = 0.1 𝑘B𝑇 )
in order to identify those frames which feature free energy estimates below (see Fig. 2.4, 1). Now the
free cutoff is slowly increased (see Fig 2.4, 2) and frames are assigned to the same cluster if they feature a
geometric distance below 𝑑lump.
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2. Theory &Methods

Figure 2.4.: One dimensional visualization of the density-based clustering method. The free energy profile is
shown in red . The free energy cutoff (in grey ) is slowly increased and geometrically isolated
clusters are identified. For certain free energy values (see 4 and 6), the free energy barrier, which
separates two clusters is lower than 𝛥𝐺cutoff—in this case the two clusters are merged. For a specific
choice of 𝛥𝐺cutoff, the (still) isolated clusters are identified as states.
Underneath each free energy profile: Procedure of partition the coordinate space into microstates:
Starting at the (bottom) end of every leaf, one follows it until it is merged at a node (free energy of
barrier). If one of this branches aggregates enough frames (𝑃branch ≥ 𝑃min), a branch is regarded as
a microstate.

This lumping distance is chosen as 𝑑lump = 2√⟨𝑥2NN⟩, where ⟨𝑥NN⟩ denotes the mean nearest-neighbor
distance. For Gaussian distributed data, this choice guarantees a probability of 9 5% that a randomly
picked frame has a neighbouring frame within the hypersphere spanned by the lumping radius as
𝑑lump ≥ ⟨𝑥NN⟩ + 2𝜎, where 𝜎 denotes the standard deviation.
With an increasing free energy cutoff, those clusters absorb more frames and therefore grow closer
together (see Fig 2.4, 3). If the distance between two frames of different clusters eventually falls below
the lumping distance 𝑑lump, the two clusters are merged together (see Fig 2.4, 4 and 6). Once this
procedure is completed, the free energy is scanned again and clusters form microstates if they have
higher populations than some desired value 𝑃min prior to being merged with another cluster. Uniquely
assigning every frame to such a microstate leads to a discretization of the trajectory by the resulting set
of microstates.
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Reaching the highest value of the free energy cutoff, the great majority of all frames are usually assigned
to one cluster. Yet often a few percent of the frames remain geometrically isolated and can therefore be
regarded as noise. In fact, all clusters are assigned as noise if their population does not exceed 0.1% of all
data. In this case, we kinetically assign affected frames to the microstate visited before.
This procedure allows a partitioning of the coordinate space into a set of microstates and consequently
a discretization of the trajectory which from now on will be referred to as microstate trajectory. In
Markov state modeling, this microstate trajectory is considered a Markov chain and applying the MSM
framework in Sec. 2.6 enables to extract valuable information and therefore allows to obtain deeper
insights into the underlying dynamics of the protein.

2.5. Dynamical Coring

Projecting high dimensional data onto a low dimensional coordinate space (see Sec. 2.3) can lead to
projection errors. We consult Fig. 2.5 for an illustrative, two-dimensional example where the depicted
trajectory describes a transition from themetastable state 1 to the stable state 2. The state barrier (dashed
line) is hereby only crossed once and the region around the barrier is poorly sampled due to its higher

Figure 2.5.: Simple two dimensional model to illustrate one possible artifact of dimensionality reduction and
coring as a possible remedy.
Left: Time evolution of a sampled trajectory between the metastable state 1 and stable state 2,
separated by the energy barrier shown as a dashed line. DuringMD simulations, a protein typically
spends a great majority of its time in (meta)stable conformations which is why the transition
between both states is barely sampled.
Right: The free energy𝛥𝐺(𝑥1) of the data projected on 𝑥1. Due to the reduction of dimensionality,
the part of the trajectory marked in blue is misinterpreted as a transition from state 2 to state 1,
even though the energy barrier is only crossed once. Dynamical coring identifies a transition only
on condition that the trajectory spends a specific time in a state.
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free energy.
By projecting the trajectory on the one dimensional free energy profile along 𝑥1 (left side of Fig. 2.5)

𝛥𝐺(𝑥1) = −𝑘B𝑇 ln(∫𝑃 (𝑥1, 𝑥2) d𝑥2), (2.13)

it becomes evident that the transition between the two states is no longer well defined. The transition,
which actually only occurs once and is marked in blue, is—due to the low dimensional projection—
erroneously perceived as three transitions. In a high dimensional space, this becomes even worse which
leads to a miss-classification of intrastate fluctuations as interstate transitions eventually resulting in
artificially low metastability of the states and ruining the Markov property.
Fortunately, coring represents a simple remedy to these problems. Initially introduced by Buchete and
Hummer [61], coring requires the trajectory to reach a certain zone around the center of a state in order
to count the transition. Within the framework of this thesis, a similar ansatz called dynamical coring,
invented by Jain and Stock is used [24] (for a detailed analysis compare Ref. [26]). Instead of defining
the core of a state in a geometrical manner, dynamical coring requires the trajectory to spend at least a
minimum time 𝜏cor in the new state before counting the transition. For any fluctuations which occur
on faster timescales than 𝜏cor, the frames are assigned to the last visited state which fulfills the stable core
criterion.
After coring, the shortest possible sequences of the trajectory being in one specific state is 𝜏cor. Apart
from setting the minimal necessary time to be in a specific state, 𝜏cor simultaneously defines the maximal
time resolution of the model. It is therefore advisable to set 𝜏cor as short as possible in order to access
fast dynamical time scales as well. In the next section, we will see that Markov processes (see Sec. 2.6)
can be used for describing the dynamics of proteins. A Markov process in a discrete state space is a
homogeneous Poisson process which has the property that the probability of staying within a state
T𝑖𝑖(𝑡) decays exponentially in time [62], representing a reasonable starting point for the choice of a
appropriate coring time 𝜏cor [24]. Adopting this heuristic for large systems as e.g. PDZ2 consistently
yields non-Markovian behaviour and consequently the coring time must be chosen larger. However,
dynamical coring as described in Ref. [26] is not suitable for dealing with such large coring time 𝜏cor.
Therefore, within this thesis the dynamical coring approach is supplemented by an iterative ansatz
which highly improves the coverage of the original trajectory for long coring times (see Sec. 4.2).

2.6. Markov StateModels

MSMs have been an important driving force for the modeling and analysis of MD simulation data,
as they allow identify the most important processes in the investigated molecular system and to make
statistically sound statements about them. They are extremely popular inmodeling of protein dynamics
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[18–24] as they facilitate a “divide and conquer” approach of extracting stationary quantities and long-
time kinetics from an ensemble of short trajectories.
The key assumption of the Markov state modeling is that the dynamics of the system under study
can be approximated by a Markov chain on the clustered, discrete set of microstates. In terms of
the discrete microstates space𝛺, we can write the Markov property as the independence of the prior
history of the trajectory. Thus, the conditional probability 𝑃 (𝑋𝛵 +1|𝑋𝛵 ) for the system to change its
current conformation 𝑋𝛵 given by the microstate 𝑖 ∈ 𝛺 to the conformation 𝑋𝛵 +1 represented by the
microstate 𝑗 ∈ 𝛺 does only depend on the present microstate, i.e.:

𝑃 (𝑋𝛵 +1 = 𝑗 |𝑋1 = �̃� , 𝑋2 = 𝑖
′, … , 𝑋𝛵 = 𝑖)

= 𝑃 (𝑋𝛵 +1 = 𝑗 |𝑋𝛵 = 𝑖).
(2.14)

Here, �̃� and 𝑖 ′ denote arbitrary microstates. The power of the MSM lies in the fact that 𝑃 (|) is indepen-
dent of the past which allows above mentioned usage of the ensemble of short trajectories.
This ensemble can now be used to construct the transition matrix T which represents apart from
the state partitioning the essential ingredient of theMSM. In a first step, the transition count matrix
Tc ∈ ℝ𝑛×𝑛 which counts all transitions is set up

Tc(𝜏lag) = (
#(1, 1, 𝜏lag) … #(1, 𝑛, 𝜏lag)

⋮ ⋱ ⋮
#(𝑛, 1, 𝜏lag) … #(𝑛, 𝑛, 𝜏lag)

). (2.15)

Here, #(𝑖 , 𝑗 , 𝜏lag) is an operator which counts all transitions from state 𝑖 to state 𝑗 shifted by a lag time
of 𝜏lag. This approach is referred to as sliding window approach as the transitions are counted shifted by
a “sliding window” of length 𝜏lag, i.e. transitions are counted 𝑋0 → 𝑋𝜏lag → 𝑋2𝜏lag and then between
𝑋1 → 𝑋𝜏lag+1 → 𝑋2𝜏lag+1 and so forth.
We now seek the transition matrix T which maximizes the likelihood of describing the conditional
probabilities of the transitions in the Markov chain, i.e. the microstate trajectory

T = argmax
T̂

𝑝(Tc|T̂), (2.16)

where 𝑝(|) is the likelihood. One can show [18] that the maximum likelihood estimator is simply
the intuitively expected fraction of counts

T𝑖𝑗(𝜏lag) =
Tc
𝑖𝑗(𝜏lag)

∑𝑛
𝑘=1T

c
𝑖𝑘(𝜏lag)

. (2.17)

Moreover, we assume following properties:
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Ergodicity: The discrete microstate space𝛺 does not have two or more dynamically discon-
nected subsets. This implies that for an infinitely long sampling time 𝑡 → ∞, the
system will visit every microstate 𝑖 infinitely often. This allows us to define a sta-
tionary density 𝜇(𝑖) ∶ 𝛺 → ℝ+

0 in the whole state space𝛺

lim
𝛵→∞

1
𝑇 ∫

𝛵

0
d𝑡 ⟨𝑖(𝑡 )⟩r = ∫

𝛺
d𝑖 ⟨𝑖 ⟩r 𝜇(𝑖), (2.18)

with ⟨⟩r denoting the running average.
The stationary density thus indicates the fraction of the time the system spent in a
specific microstate during an infinitely long trajectory. It is normalized, therefore
∫𝛺 d𝑖𝜇(𝑖) = 1. For finite sampled data, the stationary density 𝜇 depends on the
lag time 𝜏lag: 𝜇 = 𝜇(𝜏lag)

Detailed
Balance:

For equilibrium processes which take place in thermal equilibrium, reversibility
must hold. This means that the number of transitions from state 𝑖 to 𝑗, must
correspond to the number of transitions from 𝑗 to 𝑖:

𝜇(𝑖 , 𝜏lag)𝑇𝑖𝑗(𝜏lag) = 𝜇(𝑗 , 𝜏lag)𝑇𝑗 𝑖(𝜏lag), (2.19)

𝜇(𝑖 , 𝜏lag) is the stationary density in microstate 𝑖 for a specific lag time 𝜏lag. This
applies due to thermodynamical considerations: In case that Eq. (2.19) is not ful-
filled, a set of microstates could form a loop in𝛺which the system takes on primar-
ily in one direction. Under certain conditions, such a system could fulfill the role
of a perpetuummobile as it would produce work. However, no external energy is
added in thermal equilibrium which is why the production of work would violate
the second law of thermodynamics.
For non-equilibrium processes this however is not the case as systems are externally
driven out of their equilibrium conformation. Applying the principle of detailed
balance in non-equilibrium data, certain backwards transitions could arise which
only exist in forward direction.

Chapman-
Kolmogorov-
Equation:

With the partitioning of the coordinate space into the microstate space and the
construction of the transition matrixT, the MSM is set up and ready to use.
The Chapman-Kolmogorov equation can be used in order to evaluate the quality
of the MSM by comparing the predictions of the MSM to the data which was used
to construct the MSM:

[T(𝜏lag)]
𝑘 = T(𝑘𝜏lag), 𝑘 ∈ ℕ+ (2.20)
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The right hand side is directly computed from the MD simulations data while the
left hand side is a simple matrix multiplication for the transition matrix set up at
the lagtime 𝜏lag. A good agreement of both sides indicates Markovianity of the
investigated system.
This test is usually only performed for the the diagonal elements ofT as comparing
off-diagonal elements is very inconvenient and problems related to low sampling
are likely to arise.

A very interesting kinetic property, which is often also accessible in experiment, are the relaxation
timescales of the investigated system. In MSMs, this relaxation timescales correspond to implied
timescales 𝑡𝑖, which can be calculated from the eigenvalues 𝜆ts of the transition matrixT(𝜏lag)

𝑡𝑖(𝜏lag) = −
𝜏lag

ln𝜆ts
𝑖 (𝜏lag)

. (2.21)

In a Markov system, the eigenvalues 𝜆ts
𝑖 (𝑘𝜏lag) can be approximated by 𝜆ts

𝑖 (𝑘𝜏lag) = [𝜆
ts
𝑖 𝜏lag]

𝑘 of which
follows that the timescales 𝑡𝑖 should be relatively constant [63]

𝑡𝑖(𝑘𝜏lag) = −
𝑘𝜏lag

ln𝜆ts
𝑖 (𝑘𝜏lag)

= 𝑡𝑖(𝜏lag). (2.22)

For complex systems, like e.g. PDZ2, this is however not the case for very short lag times. As implied
timescales tend to become more constant for higher lag times, this test can determine a suitable lag time
𝜏lag for the construction of the MSM.
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2.7. TypicalWorkflow

The theoretical background explained in this chapter allows us to move on to investigate the allosteric
transition in PDZ2. In the following, all steps are briefly presented according to the order in which we
will employ them.

1. Selection of essential internal coordinates. Starting with 3𝑁 Cartesian coordinates, where 𝑁
denotes the number of atoms of the protein, we need to decouple the proteins dynamics from
the global motion. Therefore we transform the coordinates to internal coordinates, which can
be e.g. C𝛼−distances, inter residual distances or backbone dihedral angles. By selecting a certain
set of coordinates, one can shift the focus on areas of the protein which are of prior interest. In
this thesis, interresidual contact distances were chosen.

2. Dimensionality reduction.

a) Projecting the data. Since the later used clusteringmethod is based on a free energy estimate,
the density of the sampled points needs to be drastically increased in order to obtain well
defined microstates. Therefore we apply a dimensionality reduction technique, which can
be PCA, TICA or a machine learning based method. Here, PCA is used.

b) Selection of important PCs. The resulting PCs from the PCA are investigated for properties
such as cumulative flux or their free energy projections. A low dimensional representation
of the simulated data is selected.

3. Clustering. The low-dimensional representation of the input data is clustered which yields a
set of metastable microstates which can be assigned to certain conformations of the protein.
Lumping. (Optional) In an additional optional step, these microstates can be lumped into a
smaller set of macrostates by kinetically matching them together.

4. Coring. The reduction of dimensions in step 2 introduces artefacts that cause intrastate fluctua-
tions to be misinterpreted as interstate transitions. Coring helps to correct this artefacts.

5. Constructing the MSM. After a suitable choice of the microstates and the coring time, the
transition matrix and therefore the MSM can be constructed.

6. Interpretation and validation of theMSM.A row of predictions provided by the MSM such as
timescales, and among other things, the most important pathways shed light on the underlying
dynamics and mechanisms of the system under study.
The predictions of theMSMmust be compared with theMDdata in order to verify their validity.
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On the Choice of Presented Results
We will try to provide a well understandable and structured format also for a reader which may not
be familiar with every aspect of Markov State Modeling. Therefore, one suitable model is used in the
following two chapters, Ch. 3 and Ch. 4, for discussing each of the steps presented in the typical
workflow (see Sec. 2.7) in detail. An attempt is also made to illustrate the multitude of possible
decisions in order to show that there is no such thing as the ideal way. As the data used for this model
mostly stayed the same during all the time spent on this model, we will refer to it as data generation 1.
In Chapter 5 we consequently apply all the knowledge gained in the course of working with data
generation 1 directly on a reduced data set what we then call data generation 2 on which we will
construct an additional, secondMSM. This allows us to evaluate the reliability and the replicability
of the clustering and theMSM predictions. Besides, we will see to what extend a smaller—but more
targeted—set of input coordinates improves the quality of the MSM’s predictions.
The findings of both models are then conclusively discussed in the last chapter, Ch. 6.
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3. Data Generation 1: Preparative
Steps Towards a
Nonequilibrium-MSMof PDZ2

It always takes longer than you expect, even when you take into account Hofstadter’s law.

Hofstadter’s law

In this chapter, the preparing steps to construct a MSM for the full data set of PDZ2 (equilibrium and
nonequilibrium trajectories) are explained. This includes in particular the choice of suitable internal
coordinates in form of some distance metric (see Sec. 3.2) and the subsequent selection of adequate PCs
depending upon various properties such as cumulative flux, free energy projections or autocorrelation
functions (see Sec. 3.3).
In a subsequent step, the chosen PCs are clustered to get a set of microstates (see Sec. 3.4). The proce-
dure performed in this chapter essentially comprises the steps 1–3 presented in the workflow in Sec. 2.7.

3.1. PreviousWorks

Several studies of PDZ2 have already been carried out and will shortly be discussed here. Besides Sebas-
tian Buchenberg, who carried out the simulations of the equilibrium and nonequilibrium trajectories
[17, 42], several persons were involved in PDZ2Markov state modeling.
So far, all attempts of Markov modelling of PDZ2were based on dihedral angles as input coordinates
followed by a dihedral angle principal component analysis (dPCA+), a method which was developed to
analyze periodic input coordinates with minimal projection error [53]. First, dihedral backbone angles
were used as they are an intuitive choice for tackling the interesting dynamics of PDZ2, which mostly
happen in its loop regions.
As the signal-to-noise ratio was one of the first problems which were encountered, F. Sittel proposed to
take only those dihedrals into account which feature a clear multi-state behaviour [64]. This led to a
reduction from the overall available 192 dihedral angles down to 104 angles. Neglecting almost half of
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the overall available dihedral angles was possible since most of the excluded angles are located in stiff
𝛽-sheets which hardly change at all.
By performing dPCA+ on fourteen 2.5 𝜇s long equilibrium trajectories, S. Ohnemus achieved a par-
tial separation of the Cis and Trans regions when projecting the free energy onto the first two PCs
𝑥1 and 𝑥2 [65]. Yielding a good description for the Cis→Trans transition, the nonequilibrium data
was subsequently projected on the first six PCs of the equilibrium dPCA+. AMSMwas constructed
which aimed to describe the Cis→ Trans transition. After clustering, Cis and Trans microstates were
not clearly separated which, among other things, considerably limited the validity of the MSM.Many
problems can be traced back to the fact that the trajectories were not well converged. Therefore, the
equilibrium trajectories were elongated to 10 𝜇s each nowmatching the length of the long nonequilib-
rium trajectories.
This extended data set was analyzed by A. Weber in Ref. [66]. One of the seven Cis trajectories was
dominated by two “trap microstates”. Bothmicrostates featured deformations in the 𝛼2-helix leading to
left-handed 𝛼-helical conformations. As PDZ2 naturally occupies right-handed helical conformations
and the transition between left- and right-handed helical conformations is known to be very slow, it is
reasonable to assume that this is the reason why the system is not able to leave those trap microstates.
The azobenzene photoswitch, linked to a neighboring residue, might have caused this unnatural trap
conformations [66]. Hence, this trajectory was removed from the data set and—to preserve equality for
Cis and Trans—one Trans trajectory was removed as well. This is the actual state of the PDZ2 data,
which now consists of 60 𝜇s Cis, 60 𝜇s Trans and 288 𝜇s nonequilibrium trajectories.
It turned out that dihedral angles primarily work well in small proteins but are not well suited to tackle
the conformational changes in a relatively large protein such as PDZ2. Thus, no explicit Cis and Trans
regions could be determined which hindered any MSM to describe the Cis→Trans transition. Sup-
ported by the success for other large proteins such as T4 Lysozyme [43, 67], distances seem to be more
promising internal coordinates for describing the dynamics in PDZ2.
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3.2. Choice of Internal Coordinates

In the very first step, the intrinsic motion of the protein must be decoupled from the movement of the
protein in the bath. Since we work with distance-based internal coordinates, two different options for
them are discussed in Sec. 3.2.1 before a suitable set of coordinates is chosen in Sec. 3.2.2.

3.2.1. C𝛼-Distances vs. Contact-Distances

When working with distance-based internal coordinates (see Sec. 2.2), several different options to
specify the start and end point of the distances are available. Depending on the problem at hand, one
may e.g. focus on the backbone structure if dynamics on a large scale are involved (e.g. protein folding).
In this case, C𝛼-distances would be appropriate since the difference between the relatively freely moving
side chains and the backbone is negligible compared to the overall motion of the protein. In addition,
the backbone (and therefore C𝛼-coordinates) tends to better describe the overall structure of the protein
because unlike the side chains, it is not so susceptible to rapid fluctuations.
For PDZ2 however, fast dynamics within the side chains attached to the backbone seem to be the main
driving force for the allosteric transition [29]. Contact-based distances are the shortest distance between
atoms from two different residues [see Eq. (2.4)] and can therefore take dynamics of the side chains into
account. As side chains often undergo rapid changes in their orientation, the shortest atoms between
two residue can change several times in the course of the MD trajectory. The increased susceptibility in
the side chains makes them the more promising candidate to describe the allosteric transition in PDZ2
compared to C𝛼-distances.
In order to verify this assumption, contact-distances and C𝛼-distances between two residues, evenly
distributed throughout the protein, were calculated and then compared. In Fig. 3.1, the probability
distribution of the distances P𝑑 in Cis and Trans conformation of the protein is plotted for the shortest
lying atoms of two residues (left) and for the C𝛼-atoms (right). Shown are two exemplary distances
between the residues 17 and 22, covering the distance between the 𝛽1𝛽2-loop and the stable 𝛽2-sheet
and the distance between residue 27 and 33which represents dynamics in the very flexible 𝛽2𝛽3-loop.
The probability distribution of the distance between the residues 17 and 22 in particular reveals that
C𝛼-distances may be too static for the subtle changes in the proteins conformation—the distribution
almost looks Gaussian for the Cis and Trans conformation at mean values of ∼1.28 nm and ∼1.35 nm
respectively. In contrast to contact-distances for which two well defined maxima are visible which
indicates a higher resolution of dynamics in this picture. The side chains adopt different conformations
in contrast to the relatively stiff backbone. Note that in general we find that the contact-distances are
smaller compared to C𝛼-distances , as both side chains are oriented towards each other most probably
resulting in the formation of hydrogen bonds (especially in the Cis conformation).
In the 𝛽2𝛽3-loop, the contact-distance also provides a more differentiated picture emphasizing the
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advantage in resolution of the very flexible side chains over the stiff backbone. Although the probability
distribution for the C𝛼-distances shows minor differences between Cis and Trans conformations as
well, they are not that distinct as for contact-distances. To conclude, since the contact-distances seem
to resolve the differences between Cis and Trans in more details, they are used in the following. One
might note here, that the term “contact-distances” is misleading for long distances, since in that case no
contacts are formed. But even for long distances, we expect contact-distances to perform equally well or
slightly better, with relatively small differences compared to C𝛼−distances.

contact-distance [nm]

contact-distance [nm] -distance [nm]

-distance [nm]

Figure 3.1.: Probability distribution for Cis ( orange), Trans ( blue) and nonequilibrium ( grey) using
contact-distances (left) and the C𝛼-distances (right). Top: distances between residues 17 and 22.
Bottom: distances between residues 27 and 33. The red dashed line indicates the threshold of
4.5Åwhich indicates the maximum distance for the formation of hydrogen bonds.

3.2.2. Selection of Inter-Residual Contact-Distances

In the last subsection, it was illustrated that contact-distances are well suited as internal coordinates
since they emphasize the differences between the Cis and Trans conformation of PDZ2. For the
full description in terms of these internal coordinates one would need to transform the Cartesian
coordinates of all 9 6 residues (more precise, the atoms of all these residues) into (9 6 − 1)2/2 ≈ 4500
inter-residual distances (factor 1/2 as 𝑑𝑖𝑗 = 𝑑𝑗 𝑖). Because the calculation of distances from the MD data
is accompanied by a high computational effort, it is not feasible to calculate all those 4500 distances.
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Additionally, problems arise when calculating the correlation matrix for the PCA as the amount of data
would exceed the capacity of the computer systems available.
Besides, and more importantly, a reduced number of distances reduces the “noise” in the data which
improves the quality of the PCA. Hence, we aim to lower this number drastically in order to perform
a PCAwhich is affected by as little noise as possible while not exceeding computational capacities. A
first preselection for the residue pairs used for the calculation of the distances is made by applying the
following four criteria:

1. The residues could potentially form hydrogen bonds by featuring a lone pair on a electron-rich
donor atom in the first residue (nitrogen (N), oxygen (O), fluorine (F)) while the second residue
functions as acceptor.

2. The residues could potentially form salt bonds/ionic bonds by featuring both, positive and nega-
tively charged ions, respectively.

3. The residues are located at the beginning or the end of a stable secondary structure element and
could therefore cover the relative movement between secondary structure elements.

4. The distance between two residues falls below 4.5Å in the course of the MD simulation. This
criterion certainly has a large overlap with especially the hydrogen bond criterion, but it turned
out that important pairs of residues which are not covered by one of the first three criteria can
still be found this way.

For all criteria, pairs of residues were excluded if they are less than four residues apart from each other as
those often form stable helical structure elements which are relatively stiff. Applying all four criteria
to the data, little more than 1600 pairs of residues were identified which fulfill at least one of them.
While already cutting the number of distances down to about one third, the number of remaining
distances must be further decreased in order to reduce noise in the data and make the PCA computa-
tionally feasible. Therefore, the probability distribution in the Cis and Trans conformation of those
1600 contact-distances were evaluated (see Fig. A.1 on page 86). As we seek collective variables (in
the form of principal components) which describe the allosteric transition between the Cis and Trans
conformation of the protein, those contact-distances need to be retained which show a clear separation
between their Cis and Trans probability distribution. This is the case for e.g. the distance between the
residues 29 and 9 4 in Fig. A.1, while the distance on the between the residues 2 and 87 does not show
a distinct separation and is thus discarded. By following this procedure, the ∼1600 contact-distances
could be further reduced down to 429 distances shown in a matrix representation in Fig. 3.2. The red
dots indicate the contact-distances which are retained while the black dots represent pairs of residues
which are less than four residues apart and therefore excluded. The yellow dots indicate the two 𝛼-
helices.
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As several clusters of residue pairs can be found in this matrix representation, high correlations between
the contact-distances in these clusters are probable. In Ch. 5, a workflow is presented which aims at
reducing correlations between the distances to a minimum.

selected residue pairs
excluded residue pairs

residue 1

re
sid

ue
 2

Figure 3.2.: ( red) Selected residue pairs used in the PCA due to their distinct difference between their Cis
and Trans distribution. ( yellow) The yellow fields indicate the two 𝛼-helices. ( black) Contacts
between residues which are less than four residues apart are discarded as they often occur within
helical structure elements or do not feature a distinct difference between their Cis and Trans
distribution. The matrix is symmetric as 𝑑𝑖𝑗 = 𝑑𝑗 𝑖.

...in a nutshell.
Compared to C𝛼-distances, contact-distances seem to be better suited as internal coordi-
nates for PDZ2 due to the importance of dynamics in the side chains. The potential
∼4500 contact-distances were reduced to 429 contact-distances by excluding those dis-
tances which are not featuring a distinct difference between their Cis and Trans proba-
bility distribution.
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3.3. PCA and Selection of PCs

In order to reduce the dimensionality of the data, which was preselected in the last section, a standard
PCA is performed in two steps. We aim at identifying reaction coordinates which describe the confor-
mational transition between Cis and Trans conformation. Since the input data was chosen in such a
way that the most prominent difference in the data is a large variance between Cis and Trans confor-
mation, we expect 𝑥1 in particular to describe the allosteric transition. In order to obtain PCs which
well separate Cis from Trans, the PCA was initially ran only on the equilibrium data and in a next step
the nonequilibrium data was projected onto the eigenvectors of the equilibrium PCA. This procedure
has been proven advantageous in previous works [65, 66]. However, we found that the equilibrium
trajectories were not yet fully equilibrated and that the first 3 𝜇s are the most affected ones. While we
still retain these first 3 𝜇s of all equilibrium trajectories in data generation 1, we completely discard the
affected data from data generation 2 on.
The range of contact-distances extends from about ∼0.2 nm to about ∼3.5 nm. Consequently, the
contact-distances for the residues far apart tend to undergo changes which are greater in absolute value
than those of residues nearby. Because those larger changes are not necessarily more important than
smaller ones, which e.g. also describe the formation of hydrogen bonds, we calculate the correlation
matrix instead of the covariance matrix [see Eq. (2.7)].
Fig. 3.3 shows the cumulative fluctuations of the equilibriumdata. The cumulative fluctuations provide
information on howmuch of the systems total variance is covered within the first 𝑛 PCs by cumulatively
summing up the corresponding eigenvalues. One can see that the first seven PCs cover already more
than 60% of the systems overall motion. It takes another 13 PCs (𝑥1–𝑥20) to cover 80% of the variance

=1

429

Figure 3.3.: The eigenvalues (here sorted from high to low and normalized) indicate howmuch of the systems
variance much is covered by the corresponding PC (marked in blue). The cumulative fluctuation
is the sum of the eigenvalues up to a specific number of PCs 𝑛 (marked in red).

29



3. Data Generation 1: Preparative Steps Towards a Nonequilibrium-MSMof PDZ2

present in the data and 192 PCs in total to cover around 9 9%. Hence, the last 237 PCs only account for
1% of all variance in the data set (see Appendix, Tab. A.1 on page 85). Now, that 429 PCs are available
to choose, we need to select a low number which can be clustered to obtain microstates. The selection
will be based on four criteria:

1. Eigenvalues of the PCs and the resulting cumulative flux (see Fig. 3.3 and Tab. A.1)

2. Temporal evolution of the data along the PCs (see Fig. 3.4)

3. Slow decay of the autocorrelation functions of the PCs (see Fig. 3.5)

4. Free energy projections on the PCs and their ability to separate Cis and Trans (see Fig. 3.6)

The application of these four criteria to the examined PCs aims for the best possible description of the
proteins dynamics. Since most of them generally go hand-in-hand, it is sufficient to only analyze to the
first few PCs as those already cover the great majority of the systems dynamics (see Fig. 3.3).

Temporal Evolution ofMDTrajectories

Our goal is to identify and isolate the important, slow dynamics of PDZ2 by selecting and retaining
those PCs, which describe the system’s essential motion and discarding those which show mostly
uncorrelated motion. One approach to do this is the investigation of the temporal evolution of the
systems trajectory along the different PCs.
We hope to identify PCs which can distinguish multiple metastable states along the trajectory because
this is a strong indicator for non-randomdynamics of the system as they should be clearly distinguishable
from themostly uncorrelatedmotionof the bath. For illustration, Fig. 3.4 shows the projected data along
the first 8PCs 𝑥1–𝑥8 and additionally along 𝑥7 8 to offer some comparison of hownon-essential dynamics
might look like. 𝑥7 8 was chosen as a example because it only contributes 0.01% to the cumulative flux
(see Tab. A.1).
Each grid-box in Fig. 3.4 represents one single trajectory with a length of 10 𝜇s and the type of the
trajectory is represented by orange forCis (first 6 trajectories), blue forTrans (next 6 trajectories) and grey
for nonequilibrium (last 20 trajectories). On the right hand side one can see the free energy projection
along the corresponding PC 𝑥𝑖, i.e.

𝛥𝐺(𝑥𝑖) = −𝑘B𝑇
ln 𝑃 (𝑥𝑖)
𝑃max

, (3.1)

where 𝑃max = max𝑡 𝑃 [𝑥𝑖(𝑡)] corresponds to the highest probability density. The free energy projec-
tion thus measures how often a certain value was sampled this way indicating metastability. Thus, PCs
with several local minima are good candidates for resolving the slow dynamics of the protein while PCs
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with a single minimum usually do not provide any valuable information.
A good example is 𝑥1: During its temporal evolution, most of the single trajectories occupy several
plateaus corresponding to metastable conformations which arise again and again. This indicates that
important dynamics are taking place here. In addition, Cis and Trans trajectories on average occupy
different values while the nonequilibrium trajectories occupy values in between which suggests that the
transition region is nicely covered. Consequently, the free energy projection onto 𝑥1 shows multiple
local minima located in regions far away from 𝑥1 = 0. The next 4 PCs, 𝑥2–𝑥5, all resolve several local
minima in the free energy and feature plateaus as well.
In contrast, distinct plateaus are far less occupied along 𝑥6 in the course of the evolution, both in the
equilibrium and in the nonequilibrium trajectories. This is also reflected in the free energy plot which
indicates that the frames are Gaussian distributed around 𝑥6 = 0. However, 𝑥7 seems to resolve more
structure, especially in the Cis trajectories which is also notable in the slightly more structured free
energy projection (left, at values around 𝑥7 ≈ 8 a local free energy minimum can be observed). This
hints that 𝑥7 may be better suited to capture important motion of the protein compared to 𝑥6. Looking
at our example for non essential PCs, 𝑥7 8, one can see that hardly no structure is resolved and that only
very small values are covered The free energy projection along 𝑥7 8 on the right confirms this impression
as only a single minimum is apparent.
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Figure 3.4.: Left: Temporal evolution along the first 8 PCs. Orange denotes the symmetric time average over
105 Cis frames, blue Trans frames and grey are nonequilibrium frames. As a reference, 𝑥7 8 is
shown as well which contributes 0.01% to the cumulative flux. Right: On the right side, the free
energy is projected onto the corresponding PC.32
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Autocorrelation functions

The dynamics of proteins are often complex and evolve over several timescales. A plain analysis of the
time evolution of the trajectory along the PCs, as it was performed in the last subsection, is often helpful
for judging the ability of the PCs to separate essential motion from noise, but it is only partially suitable
for making predictions about the time scales involved. The latter can be examined by calculating the
autocorrelation function (ACF) for different principal components 𝑖, which, in our case, describe the
correlation of the system with prior conformations in form of contact-distances along directions of
maximum variance 𝑥(𝑖)(𝑡) as a function of the lag time 𝜏

ACF𝑖(𝜏 ) =
⟨(𝑥(𝑖)(𝑡) − ⟨𝑥⟩)(𝑥(𝑖)(𝑡 + 𝜏 ) − ⟨𝑥⟩)⟩

⟨𝑥2⟩ − ⟨𝑥⟩2
=

Cov[𝑥(𝑖)(𝑡), 𝑥(𝑖)(𝑡 + 𝜏 )]
Cov[𝑥(𝑖)(𝑡), 𝑥(𝑖)(𝑡)]

, (3.2)

where ⟨𝑥⟩ denotes the mean of 𝑥 and ⟨𝑥2⟩ − ⟨𝑥⟩2 the variance. This can be rewritten for a discrete
trajectory with𝑁𝛵 data points 𝑥

(𝑖)
𝑘 as

ACF(𝑖)(𝜏 ) =
1

𝛮𝛵−𝜏
∑𝛮𝛵−𝜏
𝑘 (𝑥(𝑖)𝑘 − 𝜇𝛵)(𝑥

(𝑖)
𝑘+𝜏 − 𝜇𝛵)

1
𝛮𝛵
∑𝛮𝛵
𝑘 (𝑥

(𝑖)
𝑘 − 𝜇𝛵)

2 , (3.3)

where𝜇𝛵 =
1

𝛮𝛵𝛮traj
∑
𝛮traj

𝑖 ∑𝛮𝛵
𝑘 𝑥(𝑖)𝑘 denotes themean of one equilibrium conformation (Cis or Trans)

for𝑁traj = 6 trajectories each [68]. Calculating the ACF this way leads to meaningful results only for
stationary equilibrium-processes, because they feature time-independent mean and variance. Instead of
calculating themean and variance for each trajectory separately, we calculate them for once Cis and once
for Trans separately. The underlying reason for that is that all trajectories of one kind (Cis or Trans) are
part of one conformation of the system and we do not anticipate that a single trajectory represents the
entire dynamics of the system, but the complete ensemble instead [69].

As the sample size𝑁𝛵 − 𝜏 decreases linearly which results in a higher statistical error, values ACF(𝜏 >
𝛮𝛵/2 ≈ 5𝜇s) should be analyzed with caution. If the motion of the system along 𝑥𝑖 stays correlated
for some lag time 𝜏, i.e. non-random, the ACF deviates from zero. Therefore we conduce the ACF-
analysis in order to test whether a timescale separation between the slow dynamics of the system and
uncorrelated fast motion of the remaining components exists. We expect a much slower decay for the
first few PCs while higher PCs should decay faster as they are expected to represent bath dynamics.
Fig. 3.5 shows the ACF of the first 8 PCs for the Cis and Trans trajectories. Again, 𝑥7 8 is showed to offer
a comparison of what a fast decaying PC looks like. We see that 𝑥6 falls off comparatively fast for both
Cis and Trans trajectories. Especially in the Cis ACFs, one can see that 𝑥7 decays relatively slow which
matches the observations made in the last section, where we notice a higher correlated motion of the
trajectory along 𝑥7 compared to 𝑥6. For the Trans trajectories both, 𝑥6 and 𝑥7 , decay in a similar manner
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Figure 3.5.: Autocorrelation function of the equilibrium conformations (left: Cis, right: Trans) for the PCs
𝑥1–𝑥8 and 𝑥7 8.

which is not surprising as the time evolution of the trajectories along both PCs look similar (compare
Fig. 3.4). As 𝑥7 seems to be more important for resolving structural changes in the Cis conformation,
this indicates that 𝑥7 might be better suited to describe the systems dynamics as 𝑥6. Not surprising, 𝑥7 8
decays orders of magnitude faster than the rest.
It is important to emphasize that neither the examination of the trajectory evolution along the PCs,
nor the ACF analysis alone is sufficient when conduced single-handed since the former does not allow
precise predictions about the time scales involved and the latter does not tell us anything on the frequency
of events which both should be taken into consideration when selecting the PCs. This is further
supported by the fact that such an investigation of ACFs, as it was performed here, is only meaningful
for equilibrium trajectories since we presume relatively constant values for mean and variance which is
however not fulfilled for nonequilibrium trajectories.

Free Energy Landscapes

After discussing the contribution of the individual PCs to the overall variance, the time evolution and
the ACF of the first few PCs in the last three sections, the last missing piece is to discuss their ability to
split the free energy landscape into Cis and Trans regions.
Further ahead in Sec. 3.3, the PCA setup was explained: The principal components were computed
using only the equilibrium data in order to guarantee the best possible separation betweenCis andTrans
conformation. Here we want to illustrate to what extent such a separation has been achieved. To this
end, the free energy landscape of the whole data set, as well as the Cis and Trans datasets separately, have
been projected onto two PCs at a time. By adding a second dimension to the free energy projections,
one can get insights into the interplay of both used PCs and therefore examine the connectivity between
local minima which can not be resolved in only one dimension.
Fig. 3.6 shows the two dimensional free energy projections onto the first 7 PCs. We also investigated 𝑥8
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in detail but will refrain from showing it in the following for the sake of clarity. Regarding 𝑥7 and 𝑥8,
no big differences are apparent, but since 𝑥7 contributes more to the overall variance (see Tab. A.1), we
favored 𝑥7 over 𝑥8.
One can see that 𝑥1 nicely separates Cis and Trans data and that there are large regions present which
are either populated by Cis or by Trans. It is worth noting that there are two equilibrium trajectories
which fall out of the pattern, namely the fifth Cis trajectory and the first Trans trajectory. Both of
them are located in the region typically occupied by the remaining trajectories of the other type (see Fig.
A.3). Besides the possibility of being a projection artifact, this might indicate that the initial conditions
for performing the equilibrium simulations were not yet fully equilibrated resulting in an inadequate
propagation of the remaining trajectory. Interestingly, 𝑥3 does also separate the Trans region from the
Cis region to some extend.
Approaching higher PCs, the overlap of Cis and Trans raises since the free energy projections of both
Cis and Trans increasingly approaches a Gaussian distribution. Keep in mind, however, that it is hard
to judge the overall connectivity/separation only based on two dimensional projections. Concerning
higher PCs, despite the overlap in two dimensions, Cis and Trans region might still be separated in
the full dimensional space. Regarding the importance of 𝑥6 or 𝑥7 , no big difference between both are
notable in this two-dimensional representation.

...final choice of PCs
Over the last four sections, wediscusseddifferent properties of thePCs inorder to analyze
them with respect to their suitability to separate the system’s essential motion from the
bath dynamics. Regarding the contribution of the individual PCs towards the overall
variance of the system and the time traces with the corresponding one-dimensional free
energy projection, we could see a big difference between the first five PCs and the rest.
As already more than half of the system’s dynamics is covered with these five PCs we
retained them for the subsequent clustering process. We aimed to cover around ∼60%
of the dynamics of the system which is why we included one additional PC. In most of
the criteria we imposed, 𝑥7 appears to be a more promising candidate compared to 𝑥6,
resulting in the final set of PCs consisting of 𝑥1–𝑥5 and 𝑥7 . We have decided to not take
any more PCs along, because the resulting quality of the microstates resolution would
suffer with each additional PC. This would result in an even larger clustering radius
which increases with each additional PC due to a larger mean nearest-neighbor distance.
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Figure 3.6.: Lower diagonal elements: Free energy landscapes for combinations of the PCs 𝑥1–𝑥7 . On the
diagonal the one dimensional free energy profile in the respective PC x𝑖 is shown. The bright yellow
color indicates the free energyminima, while greenish colors announce increasing free energy values
up to high free energy values which are displayed in blue.
Diagonal elements: One-dimensional free energy projections along the corresponding PC.Upper
diagonal elements: (Non-)separation between Cis ( red) and Trans ( blue). For the sake of clarity,
the upper diagonal elements are arranged in the same manner as the bottom diagonal elements (see
small labels). Differences between upper and lower diagonal elements is due to the nonequilibrium
data, which is included only in the lower diagonal elements. Dark colors indicate free energy
minima while bright colors mean high values of the free energy.
Since we only discuss the free energy qualitatively, we refrain from showing the colorbar.
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3.4. Clustering

In the last section, a reasonable set of collective coordinates was identified (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥7). Now
we cluster this data by the density-based clustering method described in Sec. 2.4 in order to discretize
the high-dimensional MD-simulations trajectory into a discrete microstate trajectory, enabling one to
construct a MSM.
Following the heuristic of Nagel et al. [26], the clustering radius was determined to be𝑅 = 𝑑lump =
0.9 4 which ensures a probability of at least 0.9 5% of finding a neighbor for every data point within that
radius. Subsequently, the minimal population 𝑃min is the only parameter left to choose. 𝑃min denotes
the number of frames, typically given as percentage of all MD frames, which a cluster must at least
contain to form a microstate. On the one hand, it must be large enough to prevent the formation of
numerous microstates within one single local minimum due to fluctuations in the free energy. On the
other hand, if chosen too high, the overall resolution suffers because several isolated free energy minima
may not contain the required number of frames and are consequently merged. However, the latter
can be tested and used deliberately if one desires a more coarse grained model since geometrically close,
but different conformations are in that case lumped into a larger, more ambiguous state. Nevertheless,
the amount of available data plays a decisive role and might prohibit a too detailed model due to low
sampling of inter-state transitions. If one finds that the number of transitions between microstates
becomes very scarce with an increasing number of microstates, it is reasonable to increase 𝑃min in order
to reduce the total number of microstates.
Geometrically close microstate are not always kinetically well connected which is why in this case the
above mentioned approach is not necessarily useful. In this case, a better option for achieving a more
coarse-grained model is clustering the data to a geometrically very detailed model first by choosing a low
𝑃min and subsequently merge those microstates dynamically to macrostates [24, 49]. This procedure
takes into consideration that geometrically close microstates can still be separated by high free energy
barriers but are at the same time dynamically well connected to distant microstates.
Fig. 3.7 shows the number of resulting microstates as a function of 𝑃min. The initially fast declining
curve begins to slow down at a value of 𝑃min ≈ 7 ⋅ 10

−5% indicating that fluctuations within one local
minimum of the free energy are now clearly diminished. A second reduction of the rate of decline starts
at about 𝑃min = 0.1% and a narrow plateau can be seen (indicated by the grey-shaded area). We decided
to set 𝑃min = 25000 frames which corresponds to roughly 0.123% of the total population. This results
in 58microstates in total, a number which still allows to describe the allosteric transition in a sufficient
level of detail while still providing sufficient inter-state transitions. If desired, the number of microstates
is also large enough in order to allow dynamically lumping aiming for a more coarse-grained model.
As mentioned above, the lumping radius was chosen in such a way that ∼95% of the points have at
least one neighbour within the clustering radius, thus there must still be a rest of frames which are
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Figure 3.7.: Left: Number of microstates as a function of their minimal population 𝑃min. Right: Excerpt of the
area of interest from the left. The grey-shaded area indicates the plateau from which the final
clustering was chosen.

completely isolated without a neighbouring frame within the clustering radius𝑅 resulting in a defective
density estimation. Furthermore, completely isolated clusters incorporating frames in the range of
∼102 are assigned by default to the geometrically closest microstate. In a subsequent step, these affected
frames are first identified as “noise” and then dynamically reassigned to the prior microstate [26]. This
affected 2.68% of all frames.
One of the 58microstates was identified as a trap state as it was entered but not left until the end of the
trajectory in which it appeared. With a resultingmetastability of 𝑇𝑖𝑖(𝜏lag) = 1, trap states are devastating
in MSMs and this trap state was consequently assigned to the preceding microstate. Tab. 4.2 shows the
resulting microstates and Fig. 4.8 illustrates the arrangement of the microstates within the free energy
landscape along 𝑥1 and 𝑥2. However, both the table and the figure display microstates which have been
subjected to a coring process, which is described in the following chapter.

The density-based clustering process yielded 57microstates in total after removing one
microstate which was identified as a trap state.

38



4. Data Generation 1: MSM on PDZ2
NonequilibriumData

Torture numbers, and they’ll confess to anything.

Gregg Easterbrook

In this chapter, we will construct a MSM on the clustered data, which was discussed in the last chapter.
For this purpose, in a fist step a coring procedure is carried out to correct artifacts resulting from
dimensionality reduction (see Sec. 4.1). On the basis of the cored microstate trajectory, the transition
matrix is estimated which already represents a MSM. For a subsequent interpretation of the MSM,
however, we must first classify the microstates in order to provide a deeper understanding of the
mechanism involved (see Sec. 4.3). This includes, e.g., examining global properties such as e.g. to which
conformation the system develops towards (Cis, Trans or nonequilibrium) or the investigation of the
most important pathways (see Sec. 4.4).
The steps undertaken in this chapter consist of the steps 4–6which are described in the workflow (see
Sec. 2.7). A number of problems, especially in the coring process, have emerged in earlier works on
PDZ2 [65, 66]. Section 4.1 therefore considers the coring and its impact on the microstate trajectory in
detail and presents iterative dynamical coring as a remedy for artifacts resulting from too aggressive
coring (see Sec. 4.2).

4.1. Dynamical Coring

After obtaining the noise-corrected microstate trajectory via density-based clustering in the last chapter,
we apply dynamical coring in order to correct artifacts which have emerged from dimensionality
reduction (see Sec. 2.4). Often, these artifacts manifest themselves in the fact that individual transitions
are falsely perceived multiple times in form of spurious inter-state transitions (see Fig. 2.5). This will
result in artificially increased transition probabilities which drastically reduce the metastability and,
hence, the life time of the single microstates. By correcting them, we aim to eliminate these spurious
transitions and only retain the actual transition which occurs according to the MD data. Without
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Figure 4.1.: Population probability𝑊1(𝑡) as a function of time 𝑡 for different coring times 𝜏cor . In order to
remove the strong initial decay, a coring time of 𝜏cor ≈ 30 frames = 0.6 ns seems to be appropriate.
Back-transitions are not included in this plot.

spurious inter-state transitions, and with a constant self-transition probability 𝑃𝑖𝑖(𝑡), we expect a mono-
exponential decay of the population probability over time (if backwards transitions into the microstate
are forbidden).
We start by following the heuristic of Jain et. al [24] and investigate the probability𝑊𝑖 (𝑡) to stay in
microstate 𝑖 for at least the time 𝑡 . This should give us a first idea about an appropriate coring time 𝜏cor.
Figure 4.1 shows𝑊1 (𝑡), which is a good example for the discussion of all microstates since𝑊𝑖 (𝑡) is
very similar for all microstates. The strong initial drop, which is extremely distinctive for no or very little
coring, is already removed for the most part by a coring time of 𝜏cor = 20 frames = 0.4 ns and practically
completely diminished for 𝜏cor = 30 frames = 0.6 ns. Choosing 𝜏cor = 0.6 ns as the final coring time,
we can examine the Markov property of the system by performing the Chapman-Kolmogorov test [see
Eq. (2.20)].

The Chapman-Kolmogorov test for microstate 1 and a coring time of 𝜏cor = 0.6 ns is shown on the
left side of Fig. 4.2 for different lag times 𝜏lag. The lag time 𝜏lag hereby specifies the width of the sliding
window approach, i.e., transitions between 𝑋0 → 𝑋𝜏lag are counted, then between 𝑋1 → 𝑋𝜏lag+1 and so
on. All those transitions counted this way are then combined into one single transition count matrix
which yields the transition matrix through normalization. By counting the transitions which happen in
the single trajectories and combining them into one single transition matrix, we can predict long-term
dynamics via multiple multiplications of the resulting matrix with itself. This provides predictions at
intervals of the lag time 𝜏lag.
In contrast to the MSM predictions, a new transition matrix is estimated for every MD data point with
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Figure 4.2.: Chapman-Kolmogorov test for microstate 1. Left: The trajectory after coring with a coring time of
𝜏cor = 30 frames = 0.6 ns, which corresponds to the heuristic of the𝑊1(𝑡) test. Right: Trajectory
after coring with a coring time of 𝜏cor = 500 frames = 10 ns. The accordance of the MSM-
predictions with the MD-predictions points is better compared to the coring time of 𝜏cor = 30
frames. For technical reasons, the calculation of the MD data is suspended once the resulting
transition matrix is not full dimensional anymore, i.e. the lag time is so long that single microstates
are completely skipped by the sliding window.

the corresponding lag time 𝜏lag. Comparing both tells us whether the transition matrix, once estimated
for the MSM, can predict the system’s long-term dynamics by using short-term dynamics only.
One can see, that for all lag times a large discrepancy between the predictions fromMD data and the
MSM is present which demonstrated that the microstate partitioning does not behave Markov. A.
Weber proposed to increase the coring time until a good agreement between theMSM- and theMD-
predictions is provided [66]. This is the case for 𝜏cor ≈ 500 frames = 10 ns (see Fig. 4.2, right side).
However, one can see that not only the MSM-, but also the MD-predictions are drastically altered
which means that the coring process has a major impact on the microstate trajectory. 20.8% of the
frames are changed when using a coring time 𝜏cor = 500 frames compared to the uncored trajectory
which represents a major intervention into the microstate trajectory. In order to understand how the
coring mechanism is working and what might have caused these major differences between both, cored
and uncored trajectory, let us consider the following example of a microstate trajectory and a fictive
coring time of 𝜏cor = 10 frames. Here and in the following, different microstates 𝑖 ∈ 𝛺 are represented
by numbers.

..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Assigned to microstate 1

, 3, 3, 3, 3, 3, 3, 3, ...

Even though the middle part of the trajectory underlined by the bracket clearly belongs to microstate 2,
one small fluctuation (in form of microstate 4) is sufficient for the algorithm to not find a stable core in
this region which leads to a complete discard of microstate 2. Consequently, the whole part is assigned
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to microstate 1 as it represents the last stable core.
This is indeed a huge problem in PDZ2. To illustrate this, it was found that altered sequences are often
significantly longer than specified by the coring time 𝜏cor and extend up to 45.3 times the specified
coring time 𝜏cor (see Fig. 4.4). On the one hand, that means that information is lost over the course of
microseconds while on the other hand this leads simultaneously to spurious transitions in the transition
matrix. Both of these problems significantly reduce the quality of the resulting MSM and make its
predictive value questionable. Since the uncored microstate trajectory comprises ∼1.2 ⋅ 106 transitions
in a total of∼2 ⋅ 10 7 frames, it stands to reason that large parts of the trajectory are affected by the coring
process.

Applying the coring time suggested by the𝑊𝑖(𝑡)-test does not yield Markovian results
in the Chapman-Kolmogorov tests. For significantly higher coring times, the Chapman-
Kolmogorov test indicates Markovian behaviour, but heavily affects the microstate
trajectory which makes an accurate representation of the MD data no longer possible.

4.2. Iterative Dynamical Coring

Iterative coring represents a remedy for above mentioned problems and works well for arbitrary long
coring times. The basic idea is to iteratively core the trajectory in order to avoid that individual, incor-
rectly assigned frames prevent the formation of stable cores. Therefore we start with an initial coring
time of 𝜏cor = 2 frames in the first iteration which we then iteratively increase by one frame in each
subsequent iteration until the final desired coring time is reached. Again, a simple example illustrates its
effect. In the following example we assume a final coring time of 𝜏cor = 5 frames.

..., 5, 5, 5, 5, 5, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 3, ...

↓ 𝜏cor = 2

..., 5, 5, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, ...

↓ 𝜏cor = 3, 4, 5

icor: ..., 5, 5, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, ...

ccor: ..., 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, ...

Here and in the following we denote the iterative method by the abbreviation “icor” while “ccor” is
used to indicate the classical method. For the sake of clarity, we often refer only to the coring time—in
this case a coring time provided with the superscript 𝑖, i.e. 𝜏 icor denotes iterative coring while 𝜏

c
cor refers
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to the classical method. We see that the iterative coring method performs much better in this example.
While the classical non-iterative method can only resolve two microstates in the curse of this example,
the iterative method resolves all four microstates as desired.

Benchmarks

In order to verify whether iterative coring actually performs better on real data, a number of tests
are carried out in the following. In the last section it was already suggested that classical coring alters
sequences which are much longer than the specified coring time. In order to be able to estimate the
impact of the different coring methods, the probability of each frame to be in a sequence of a certain
length is plotted in Fig. 4.3 for multiple coring times ranging from no coring (𝜏cor = 1 frame) up to
𝜏cor = 600 frames. We can use this test to judge the “reliability” of a coring method: If we find that
coring alters mostly sequences which are significantly longer than the specified coring time 𝜏cor and
leaves sequences with a similar range than the coring time 𝜏cor unaffected, we can state that the coring
method does not work as desired.
Fig. 4.3 shows the distribution for iterative coring on top and for the classical coringmethod below. The
grey solid line indicates the shortest sequence length possible (length sequence = 𝜏cor) for the respective
coring time. One immediately sees that the iterative coring approach follows the grey line tightly
corresponding to the desired behaviour while the classical coring methodmodifies the trajectory in such
a way that sequences with the length of the coring time normally do not “survive” the coring process.
Especially for longer coring times, the discrepancy between the shortest possible and the actual shortest
sequence length is large for the classical coring method (note that the x-axis is plotted logarithmic).
Two other things are worth mentioning: If uncored, the by far most occurring sequences are shorter
than 30 frames, clearly corresponding to spurious state fluctuations, which demonstrates the necessity
for coring in general. Once the trajectory is cored however, the probability of a frame to be located
within a sequence of length 𝑙 is highest for sequences with than 𝑙 > 1834 ⋅ 30 ≈ 55000 frames,
independent of how long the coring time is. This is interesting as it suggests that the great majority of
the trajectories consists of very long, stable sequenceswhich are interrupted by shorter sequences possibly
occupied by transient transition states. While the above provides a holistic view of the distribution of
sequences in the data, we now shift the focus on those sequences which are altered by the two different
coring algorithms. On the left side, Fig. 4.4 shows the number of changed sequences as a function
of the sequence length. While for classical coring sequences up to a length of 45.3 times the coring
time 𝜏 ccor = 500 frames = 10 ns are changed, which corresponds to 22654 frames, the longest altered
sequence for iterative coring is only 1.5 times the coring time 𝜏 icor = 500 frames (corresponding to 7 47
frames). For the here displayed coring time of 𝜏cor = 500 frames, the shortest sequence is 500 frames
for the iterative method and 585 frames for the classical approach.
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Figure 4.3.: Top: Iterative coring: The color indicates the probability 𝑃𝑙 of a frame to be located in a sequence
of the length 𝑙. The grey line indicates the shortest possible sequence length for the respective
coring time 𝜏cor. Bottom: The same plot for the classically cored trajectory.

To better understand the plot on the right hand side of Fig. 4.4, we recall that the microstate trajectory
is a projection of the high dimensional MD data onto a discrete, one-dimensional quantity. While
the protein may already have significantly changed its conformation in theMD data, the microstate
trajectory after coring may still pretend that little has changed since artifacts prohibit stable cores. We
find that the microstate trajectory often fluctuates back and forth between two microstates which are
kinetically closely connected and it could be that artifacts “freeze” the projection over an extended period
of time by prohibiting stable cores while the MD data continues to describe conformational changes of
the protein. If theMDdata does not change significantly during this time, the resulting projection error
would be comparatively small since MD data and microstate projection describe similar conformations
of the protein. In this case wewouldmost probably find that the cored trajectory agrees with the original,
uncored trajectory shortly after the altered sequence is over as theuncored trajectorywouldfluctuate back
into the state occupied in the cored trajectory due to their close dynamical connectivity. If, however,
the MD data changes significantly while the microstate trajectory is still “frozen”, the projection error
would be large as these changes are not reflected within the frozen microstate trajectory.
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Figure 4.4.: 𝜏cor = 500 frames = 10 ns. Left: The length of altered sequences due to the different coring
methods. Right: The distance between altered frames and the closest lying frame of the same state
in the uncored trajectory.

In order to investigate this, the distance between an altered frame in the cored trajectory and a frame of
the same state in the uncored trajectory is plotted (see Fig. 4.4, right hand side). If the above mentioned
phenomenon applied, we would observe that distances to the closest identical uncored frame are only
around half the length of the altered sequence since it would correspond to a 𝑖 → 𝑗 → 𝑖 transition.
However, for our data, that is at least not the case for the longest altered sequences, as they can be
individually identified by the plateaus in the plot at the right hand side, which agree in their length
with the points in the plot on the left hand side. This means that the system already occupied another,
kinetically not well connected, state in the MD data. As the distance between altered frames in the
cored trajectory and the same state in the uncored trajectory is significantly higher for classical coring,
the actual correct description from theMD data is substantially falsified over long periods of time for
this coring method.

All benchmarks underline the advantages of the iterativemethod over the classical coring
approach as fluctuations are corrected before applying the final, desired coring time
𝜏cor. This ensures that trajectories are always cored reliable, no matter whether they are
heavily affected by spurious transitions or not and makes iterative dynamical coring
the better suited method for the correction of artifacts stemming from dimensionality
reduction.

Applying Iterative Dynamical Coring

As the iterative coring method turned out superior, we repeat the𝑊𝑖 (𝑡)-test in order to estimate a
proper coring time 𝜏 icor. The plot can be seen in Fig. A.2 (Appendix on page 86). It is evident that
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Figure 4.5.: Comparison of time traces of two trajectory excerpts (top: Fourth Cis trajectory, bottom: first Trans
trajectory). the light blue line indicates the reference trajectory (𝜏 icor = 200 frames), the dark
blue line indicates the long iteratively cored trajectory (𝜏 icor = 3000 frames), while the red line
refers to the classically cored trajectory (𝜏 ccor = 500 frames).

now a coring time of 𝜏 icor ≈ 200 frames must be applied instead of the prior 𝜏 ccor ≈ 30 frames for the
classical method. This is remarkable but fits with the observations made in Fig. 4.4. Most probably, the
difference stems from spurious assignments of frames to stable cores which consequently increases the
metastability of the corresponding microstates when cored classically. As this effect hardly occurs for
iterative coring, longer coring times are needed in order to obtain similar metastability.
We remember that coring eliminates all dynamics happening on timescales shorter than the applied
coring time 𝜏cor regardless of the method used. So the question arises whether information on a very
short timescale (30 frames ≤ 𝑡 ≤ 200 frames) might get lost through the application of higher coring
times for the iterative method (𝜏 ilag ≈ 200 frames) compared to shorter coring times for the classical
method (𝜏 clag ≈ 30 frames). Yet, when we investigate the probability of a frame being located within a
sequence which is shorter than 𝑙 = 210 frames for the classically cored trajectory, we find it to be only
0.4 %, which is negligible compared to the benefits coming along with the iterative coring method (see
Fig. 4.3).
Just as before, the trajectory needs to be cored longer in order to achieve good agreement betweenMSM
andMD in the Chapman-Kolmogorov test. It turned out that a coring time of 𝜏 icor = 3000 frames =
60 ns results in highMarkovianity. This coring time is significantly longer than the selected classical
coring time of 𝜏 ccor = 500 frames, but actually more transitions are preserved (7 9 9 vs. 47 3) and the
overlap between the cored trajectories and a reference trajectory, which is cored with 𝜏 icor = 200 frames,
is higher for iteratively cored trajectory, even though the coring time is much longer (see Tab. 4.1).
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Table 4.1.: Comparison of the total transitions between the iteratively and classically cored model. For the
agreement, the number of identical frames of both trajectories with the reference trajectory 𝜏 icor =
200 frames were compared.

Transitions [#] Agreement [%]
ccor (𝜏 ccor = 500 frames) 473 83.01
icor (𝜏 icor = 3000 frames) 799 93.71

Figure 4.5 shows two exemplary excerpts of different trajectories which demonstrate that the iteratively
cored trajectory, even though the coring time is six times larger, follows the timetrace of the reference
trajectorymuch closer than the classically cored trajectory. Both examples show that the classically cored
trajectory occupies spurious microstates over a time interval of several of hundreds of nanoseconds
which causes the microstate trajectory to loose track of the actual dynamics of the protein captured in
the MD data. Differently, the iteratively cored trajectory represents a more “coarse-grained” version of
the reference trajectory, efficiently eliminating highly frequent fluctuations between microstates.
It is necessary to core the reference trajectory as well, as the representationwould be very fuzzy otherwise.
This explains why the classically cored trajectory is e.g. not able to find a stable core between 7 .4 𝜇s and
7 .6 𝜇s, even though the reference clearly inhibits a well defined plateau there. Sticking with a coring
time of 𝜏 icor = 3000 frames, one mirostate was identified as a trap state due to reassignments during the
coring process, effectively reducing the number of microstates to 56.
Figure 4.6 shows the Chapman-Kolmogorov test for two exemplary microstates. The highly populated
microstate 1 (left) provides a comparison of the iteratively with the classically cored trajectory (see Fig.
4.2) whereas a lower populated microstate 43 (right) serves as an example for microstates which do not
score as well in the Chapman-Kolmogorov test. The agreement betweenMSM- andMD-predictions is
excellent for microstate 1 and the MD reference is by far not so much altered as it was for the classical
coring with 𝜏 ccor = 500 frames. In contrast, the agreement betweenMSM- andMD-predictions starts
to differ at 𝑡 ≈ 2 ⋅ 102 ns for microstate 43. In order to understand this phenomenon, the transitions
in and out of microstate 43 as a function of the lagtime 𝜏lag are plotted in the lower part of Fig. 4.6.
One can see that as soon as the predictions of both, MD andMSM, start to deviate strongly from each
other, the number of transitions drops rapidly. It stands to reason that a decrease of transitions implies
that short sequences at the end of a single trajectory are not registered anymore by the sliding window
approach and that primarily long sequences remain which then leads to an increased metastability of
the MD predictions. This is an artifact stemming from working with multiple short trajectories instead
of one large one as the sliding window approach leads to a significant loss in data, mostly affecting short
sequences for long lag times 𝜏lag.
Additionally, the appearance of the microstates in the different trajectories may also play a role. Mi-
crostate 43 for example appears in seven trajectories, of which five are short (1.1 𝜇s). Microstate 1 in
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contrast appears in 45 different trajectories and 19 of them are long trajectories (10 𝜇s). Since the length
of single sequences in short trajectories is more limited to the upper end owed to the comparatively
short length of the trajectories, the MD predictions for microstates with an imbalanced occurrence in
short and long trajectories tend to overestimate the metastability of a microstate for long lag times. This
assumption is further supported by the fact that pure Cis or Trans microstates generally perform well
in the Chapman-Kolmogorov tests while only appearing in equally long 10 𝜇s trajectories.
Consequently, theMD data reference in Chapman-Kolmogorov tests for microstates which feature
a similar course of their transitions as a function of the lag time as microstate 43 and which do oc-
cur in both, short and long trajectories, might not be reliable for all lag times. As more and more
data—predominately short sequences—is ignored and largely long sequences remain, the life time for
microstates in MD is consequently overestimated for long lag times.

The trajectory was cored using iterative coring and a coring time of 𝜏 icor = 3000 frames =
60 ns which behaved more reliable compared to the practice of coring with 𝜏 ccor =
500 frames.
Besides, it was illustrated that working with multiple trajectories cause problems as

1. the application of the sliding window approach leads to a considerable loss in data.

2. they could falsify the MD reference in the Chapman-Kolmogorov test if they are
of different length.

Tc
Tc

Figure 4.6.: Top: Chapman-Kolmogorov tests for the microstate 1 (left) and 43 (right). Bottom: Transitions
[in and out of a microstate, see Eq. (2.15)] of the trajectories as a function of the lagtime 𝜏lag. The
small grey line indicates the end of the 80 short nonequilibrium trajectories.

48



4.3. Classification

4.3. Classification

In the last section we obtained the cored microstate trajectory which is the basis for the following con-
struction of the MSM. It is instructive to classify the microstates into different categories in order to
facilitate the interpretation. As the ultimate goal is to describe the Cis→Trans transition, those two
conformations should represent the first two categories. Additionally, microstates containing both Cis
and Trans frames are expected to occur as there is a small region in the free energy landscape in which
both conformations overlap—these microstates are called ambivalent microstates. Finally we need
states which are neither Cis nor Trans but describe conformations which are occupied in the course of
the transition. Those states are referred to as nonequilibriummicrostates.
It is apparent to use the six Cis trajectories for the classification of the Cis microstates, the six Trans
trajectories to classify Trans microstates and the 9 2 nonequilibrium trajectories for the classification of
the nonequilibriummicrostates. However, an examination of the equilibrium trajectories shows that
they are not at all yet equilibrated but instead still undergo substantial conformational changes. Figure
4.7 shows the equilibrium time evolution of three distances covering different regions of the protein
revealing a high overlap in the Cis and Trans conformation in the first ∼2–3 𝜇s. As the evolution of the
distances slowly levels out afterwards, we consider only the last 7 𝜇s as equilibrium and reassign the first
three microseconds as nonequilibrium. This procedure turned out to be very valuable as it reduced the
number of ambivalent microstates from 10 to 2, indicating a superior separation between Cis and Trans
microstates. Nevertheless, We must point out that this consequently would mean that the PCA (see
Sec. 3.3) would have to be redone without the first three microseconds of the equilibrium trajectories.
However, as this procedure is very time consuming due to the subsequent clustering and coring studies,
this was not done for data generation 1, but only for the second generation (see Ch. 5).
Classification scheme ⋅Due to the four timers higher number of nonequilibrium frames com-
pared to equilibrium frames (16.200.100 frames vs. 4.000.012 frames), we require nonequilibrium
microstates to consist at least of 9 5% nonequilibrium frames. The high percentage of 9 5% is addition-

Figure 4.7.: Three exemplary distances between the residues 17 and 30 (left), 32 and 7 5 (middle) and 29 and 9 3
(right). orange denotes the distance in the Cis trajectories, and blue in the Trans trajectories.
The solid lines represents a symmetric running mean over 500 frames.
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ally justified because nonequilibrium frames usually dominate the microstate composition as they can,
besides their high number, additionally adopt equilibrium conformations as well when the trajectory
either starts in a Cis microstate or describes the arrival at a Trans microstate. All other microstates,
which were not yet classified as nonequilibrium, are classified as Cis (Trans) if they feature at least 2%Cis
(Trans) frames and less than 2%Trans (Cis) frames. In the case that both, Cis and Trans, are represented
with more than 2% of the frames, the microstate is classified as ambivalent. This classification was
primarily introduced by in Ref. [66] and is adopted here to be able to compare models. As a matter of
fact, the classification scheme works well in the sense that a great majority of the microstates are robust
in their classification, i.e. small changes in the classification criteria would not result in a significant
change of the classification.
Figure 4.8 shows the free energy landscape projection on the first two PCs 𝑥1 and 𝑥2. The color of the
box around themicrostate’s number indicates the classification. A deep color indicates puremicrostates,
i.e. they feature a small percentage of nonequilibrium frames. In contrast, pale colors indicate that they
are dominated by nonequilibrium frames. When possible, we will stick with this continuous color scale,
as it allows more precise statements about the composition of the microstates. The corresponding table,
which contains the most important information on all microstates, can be found in Tab. 4.2.
The observation made in Fig. 3.6 that particularly 𝑥1 splits Cis and Trans is supported by the arrange-
ment of the microstates along 𝑥1. Trans microstates are exclusively located at negative values of 𝑥1 while
Cis microstates are primarily characterized by positive values. In total, 16Cis , 12Trans , 26 nonequi-
librium and 2 ambivalent microstates were identified.
For the purpose of illustrating the quality of the resulting microstates, 100 randomly selected overlays
of the protein’s conformation in six microstates 4, 22, 34, 39 , 41 and 48 are exemplary shown in or-
der to depict nonequilibrium, ambivalent, Cis and Trans microstates. It is notable that the different
microstates exhibit varying levels of structural variability. So, for example the frames of the Trans mi-
crostate 48 are almost perfectly aligned in all regions of the protein while the Cis microstate 41 shows
deviations in the𝛽5𝛼2-loop. The frames of the third equilibriummicrostate depicted, Cis microstate 34,
are well aligned in all metastable structures (𝛼-helices in red and 𝛽-sheets in blue) but the loop regions
are more disordered compared to the other two. One difference that immediately stands out is the
difference in the opening distance of the binding pocket between the 𝛼2-helix and the 𝛽2-sheet (see Fig.
2.1); the azobenzene photoswitch forces both structures to move apart from each other in the Trans
state. Interestingly, one sees for the ambivalent microstate 39 that only the lower part of the 𝛽2-sheet,
where the azobenzene switch is located, is forced away from the 𝛼2-helix, while the upper part lies close
to the 𝛼2-helix. This demonstrates what constitutes an ambivalent microstate and suggests that they
might be an artifact stemming from stress within the protein induced by the azobenzene photoswitch.
We can further speculate that deformation in the lower part of the 𝛼2-helix is a result of the stress as well.
For nonequilibriummicrostates, the variance within the overlays is usually higher as almost all parts of
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4.3. Classification

the protein are strongly unraveled. In contrast to all other microstates, even some of the 𝛽-sheets which
are usually tightly aligned now appear to be disordered. After all, this is however not really surprising
as the nonequilibriummicrostates are expected to amalgamate those microstates which are occupied
by the system in its very dynamical phase of the Cis→Trans transition. However, it is important to
note that microstates with higher microstate-numbers naturally tend to become tighter aligned as they
contain less frames, which we e.g. can observe for microstate 4 in comparison to 22.

Classifying themicrostates resulted in16Cis, 12Trans, 26nonequilibriumand 2 ambiva-
lent microstates. Removing the first three microseconds of the equilibrium trajectories
from the Cis/Trans classification greatly reduced the number of classified ambivalent
microstates from 10 down to 2. This is crucial since it is not clear what these constitute,
apart from artifacts issued by the azobenzene photoswitch.
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4. Data Generation 1: MSM on PDZ2NonequilibriumData

Figure 4.8.: Free energy landscape of the PDZ2 domain along its first twoprincipal components. Themicrostate
trajectory was cored with a coring time of 𝜏 icor = 3000 frames = 60 ns. Blue and orange
microstates correspond to pure Trans or Cis microstates, respectively. The paler they get, the higher
their Neq share is, which is why white corresponds to pure Neq microstates. Pink microstates
(e.g. microstate 24 and 39) denote ambivalent microstates, which feature both Trans and Cis
frames. Overlays of 100 randomly selected frames are shown for 6 representative microstates.
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4. Data Generation 1: MSM on PDZ2NonequilibriumData

4.4. Constructing and Interpreting theMSM

We have now completed all the preliminary steps (steps 1–4 in the workflow, see Sec. 2.7) and perform
step 5, which is the construction of the MSM. Beforehand, there are a few things which need to be
considered:

• The concatenation limits: As we are working with 112 trajectories, the algorithm for determining
the transition count matrix must work in such a way that spurious transitions introduced by the
concatenation of the end and the start of another trajectory are deducted. This might sound
obvious, but is worth to bementioned, as the introduction of 111 completely random transitions
into a total of 7 9 9 transitions (see Tab. 4.1) would significantly undermine the validity of the
MSM.

• The lag time 𝜏lag: We need to chose an appropriate lag time 𝜏lag to define the length of the
sliding window. As all dynamics have already been removed on timescales smaller than 𝜏 icor =
3000 frames = 60 ns, lag times smaller than 𝜏cor do not make sense. On the other side, the lag
time should not be chosen too large in order to maximize the temporal resolution, but must be
large enough that the implied timescales are converged.
Figure 4.9 shows the first implied timescale on the left hand side and one can see that they are
not yet completely converged but still increase slightly, which is a typical behaviour for systems
of biological interest. Since the Chapman-Kolmogorov test yield good results for a lag time of
𝜏lag = 60 ns, we apply this lag time.

• (Non-)reversibility: In equilibrium, it is often common for Markov state modeling to demand
“detailed balance” or “reversibility” (compare Sec. 2.6), which should prevent the permanent
production of work. We however aim to describe a nonequilibrium allosteric transition which
was triggered by applying considerable external stress through the conformational change of the
azobenzene photoswitch. This might allow certain inter-state transitions to occur only in one
direction. As we do not want to introduce spurious backward transitions into the transition
matrix, we therefore refrain from enforcing detailed balance.

Under considerationof the abovementionedpoints, a non-reversibleMSMwith a lag timeof 𝜏lag = 60 ns
is built. The implied timescales and the corresponding transition matrix can be found in Fig. 4.9.
One can see that the implied timescales [see Eq. (2.21)] are nearly constant in a time interval up to
𝜏lag = 100 ns before they increase. This is most likely due to coring. As more and more intermediate
states are skipped by an increasing sliding window, the implied timescales indicate that processes are
becoming slower.

54



4.4. Constructing and Interpreting theMSM

For the first three implied timescales we get for the selected lag time of 60 ns:

𝑡1 𝑡2 𝑡3
Implied timescale [𝜇s] 10.02 5.85 3.75

To better understand those values and which processes they describe, we will consider the correspond-
ing eigenvectors shown in Fig. 4.11. On the very top, the population of the microstates found in the
data is shown as a reference. Below the stationary distribution as it is predicted by the MSM is show in
descending order, the first eigenvector and the second eigenvector belonging to the first and second
implied timescale. The colors indicate, as before, the classification of the microstates (deep orange or
blue correspond to pure Cis or Trans microstates respectively, while a paler color represents nonequilib-
riummicrostates). We can clearly see a difference between the population in the data and the MSM
predictions. Particularly the Trans microstates are more highly populated in theMSMwhile the Cis
and the nonequilibrium microstates play a smaller role, especially compared to the MD data. This
is a hint that the MSM indeed describes the allosteric transition, as one expects that the azobenzene
photoswitch drives the protein in the Trans conformation.
For a better evaluation of the first two eigenvectors associated with the first two implied time scales, we
use a graphical representation of the transition matrix, the so called network-representation, which is
depicted in Fig. 4.10. The arrangement of network nodes, which represent the microstates, was opti-
mized by the ForceAtlas2-algorithm [70]. In an iterative process the nodes are rearranged as a repulsive
force is categorically ascribed to all nodes. Counteracting this is an attractive force resulting from the
entries of the transition matrix, which can be calculated by the product of the matrix entry and the
stationary distribution 𝑃 eq

𝑖 𝑇𝑖𝑗. Shortly speaking, the connections between the nodes, called edges, are
acting as springs which pull the repelling nodes into their final arrangement.
Regarding Fig. 4.10, two smaller clusters of strongly interacting Cis microstates are visible and we

1 6 11 16 21 26 31 36 41 46 51 56
State j

1
6

11
16
21
26
31
36
41
46
51
56

St
at

e
i

10−5

10−4

10−3

10−2

10−1

100

Figure 4.9.: Left: The first three implied timescales 𝑡1–𝑡3 of the PDZ2-MSMbased on equilibrium and nonequi-
librium data for 𝜏lag = 60 ns. Right: The transition matrix of the corresponding MSM (line-
normalized).
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4. Data Generation 1: MSM on PDZ2NonequilibriumData

notice that one of them (around Cis microstate 45) is kinetically closer connected to the Trans cluster
located on the right side of the network. About the Trans microstates, we can say that they are mostly
located within one cluster which is strongly interconnected with the exception of the isolated cluster of
the microstates 17 , 36 and 52.
The majority of the nonequilibriummicrostates is located between the second Cis cluster containing
the microstates 31, 34, 41 and 47 and the Trans clusters. Only a few nonequilibriummicrostates are
located between the other Cis cluster and the Trans cluster. It stands to reason that the transitions
from the Cis microstates 32, 45 and 46 to the Trans microstates, as described in the first eigenvector,
are much more effective and happen more frequently due to their better kinetic connection.
The fact that most of the nonequilibriummicrostates are located between the second Cis cluster and
Trans microstates could have several reasons. It may be that the pathways starting from the Cis mi-
crostates of the second cluster are extremely ineffective as they include multiple highly disordered
nonequilibriummicrostates, while the pathways starting from the other Cis cluster around microstate
45 are the dominating ones, because their intermediate nonequilibriummicrostates are less disturbed.
Another reason could be that the projection of the nonequilibrium trajectories onto the eigenvectors
of the equilibrium PCA delivers erroneous results as the first 3 𝜇s of the equilibrium trajectories are
not yet equilibrated. In Ch. 5, a PCA only on the remaining 7 𝜇s is performed in order to investigate
whether this could be an artifact originating from an inaccurate PCA.
A third reason might be that the simulated nonequilibrium trajectories are biased due to incorrect
simulation seeds (the Cis trajectories, which serve as simulation seeds, were not yet equilibrated). In fact,
an analysis of the nonequilibrium trajectories yielded that in this projection from the PCA only 21 of
100 nonequilibrium trajectories increase their share of Trans from the first to the last frame. Therefore,
we compare the microstates at the beginning and end of the trajectory and check to what percentage
they consist of Cis or Trans frames, we also call this “transness”. While only 17 .5 % of the short nonequi-
librium trajectories increase their transness, at least 35 % of the long nonequilibrium trajectories do.
This indicates that the length of the nonequilibrium trajectories might also play a decisive role, and that
they might still be too short for effectively describing the allosteric transition.
Coming back to the first eigenvector, we see in Fig. 4.11 that this eigenvector describes the flux from
all parts of the network towards the tightly packed cluster in the upper right, which mainly consists
of Trans microstates. This means, the process happening on the slowest timescale (𝑡1 = 10 𝜇s) de-
scribes the Cis→Trans transition. We must, however, mention the Trans microstates 17 , 36 and 52,
which do not belong to this cluster. The first two of them are also very notable in the second eigenvec-
tor as they contribute with large values. It looks like this eigenvector describes a drain, mainly from
these three microstates and Trans microstate 27 towards Trans microstate 12, indicating that these
three microstates and microstate 27 are relatively unstable. This is also consistent with the stationary
distribution predicted by the MSM.
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Figure 4.10.: Network representation of the 𝜏 icor = 60 ns MSM. The edges (connections between the nodes) are
weighted by 𝑃 eq

𝑖𝑗 𝑇𝑖𝑗 and the size of the nodes (circles indicating the microstates) is proportional to
their stationary distribution. Cis microstates are marked in orange , Trans microstates in blue ,
Neq in white and the ambivalent microstates in violet .

'
'

'

Figure 4.11.: Top: The population of the microstates found in the data. We define 𝑣 ′𝑗 ≡ sgn(𝑣𝑗 ,𝑖)√|𝑣𝑗 ,𝑖|. Upper
middle: The stationary distribution predicted by the MSM. Lower middle: The first eigenvector
associated with the first implied timescale of 10.02 𝜇s. Bottom: The second eigenvector with a
corresponding implied timescale of 5.85 𝜇s. The colors represent the usual scheme from Tab. 4.2.



4. Data Generation 1: MSM on PDZ2NonequilibriumData

Global Dynamics

Before we continue to discuss the dynamic in the system in detail in the next subsection, mostly by
referring to Markov chain Monte Carlo (MCMC) pathways predictions, we shift the focus on the
global dynamics of the system. As we classified all microstates as Cis, Trans, ambivalent (Amb) or
nonequilibrium (Neq) in Sec. 4.3, it is now possible to describe “global dynamics” using the MSM
predictions about the evolution of the system. For this purpose we consider the initial conditions given
through the initial population in the nonequilibrium data and combine them in a normalized state
vector, i.e. a population vector, which we subsequently propagate by multiplying it with the transition
matrix. Thus, the shares in the various conformations can be tracked over time, which is shown on the
right hand side of Fig. 4.12. To better understand these findings, the plot on the left of Fig. 4.12 shows
the temporal development in the nonequilibrium trajectories.
The small difference betweenMSM-predictions and nonequilibrium data in the initial configuration
results from the first matrix multiplication but the MSM is robust in that a randomly chosen, but
normalized initial vector only affects the first few hundreds nanoseconds until the differences level
off. We see that theMSM approximately reproduces the dynamics described in the nonequilibrium
trajectories till ∼2𝜇s, but then continues to predict dynamics up to ∼60𝜇s which correspond to six
times the length of the simulated MD data. Even changes on shorter timescales, such as the temporally
higher values for Cis compared to Trans in the range of ∼3–6 𝜇s are resolved by the MSM. In contrast
to the trend visible in the nonequilibrium data, the nonequilibrium share in the MSM constantly
decreases with simultaneous increase of the equilibrium shares with Trans ending up as the dominating
conformation.
Concerning the nonequilibrium trajectories, we notice that they barely start in Cis microstates and keep
the Cis level more or less in the course of the trajectories. For Trans, the picture is similar with a minimal
trend towards a rise in the Trans share towards the end of the trajectories. For the nonequilibrium
trajectorieswe can observe an opposite behaviour, i.e. a slow reduction towards the endof the trajectories.
It should be mentioned here that all trajectories only show the expected trend at their end for times
𝑡 ≥ 8 𝜇s. Recalling the problemof overlap betweenCis andTransmentioned in Sec. 4.3, itmight be that
the yet not equilibrated equilibrium trajectories serve as a biased simulation seed for the nonequilibrium
trajectories. For many distances, we found heavy overlap between the Cis and Trans conformations
within the first ∼3𝜇s of the equilibrium simulations which could explain why we see a higher Trans
than Cis share at the beginning of the nonequilibrium trajectories. Alongside the above mentioned
problem that the trajectories show the expected trends only towards their very ends, which indicates
again that they mostly have not reached Trans conformations yet, the validity of the nonequilibrium
trajectories seems to be limited by suboptimal simulation seeds and length. After all, it is remarkable
that the MSM still predicts the right trend for Trans, nonequilibrium and ambivalent.
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Figure 4.12.: Left: Mean time evolution of the 20 long nonequilibrium trajectories in shares of Cis, Trans, Amb
and Neq. Right: Predictions of the share evolution by the MSM.

Most Important Pathways

Another way to extract information from the transition matrix is to determine the most important
pathways by running a MCMC simulation on it. In order to initialize a MCMC, we define some
initial and final microstates with which we seek describing the allosteric transition. To do so, we
choose the pure Cis microstates 41, 45, 47 and 53 as initial microstates and for final microstates the
Trans microstates 27 , 36, 48 and 56. The simulated MCMC trajectory is 1012 frames long and was
simulated usingMSMPathfinder [71]. The 15most sampled pathways are shown in Tab. 4.3. The
most sampled pathway does only account for ∼1.6 % of all events and the 15most sampled pathways
combined account for only 8.2 % of all events. Due to the enormous combinatoric possibilities of 56
microstates this low number is, however, not very surprising.
TheMCMC also offers insights into the timescales involved. For this purpose we impose a maximum
permitted length 𝑡max on each pathway and investigate howmany pathways shorter than 𝑡max reach the
Trans region. The quantity obtained this way is the cumulative distribution function (CFD). Initially,
no pathway will make it to the Trans region, but with increasing 𝑡max, more and more pathways will
arrive there until every pathway which reaches the Trans region is shorter than 𝑡max. By differentiating
the CDF we obtain the probability density function (PDF) for the length of a pathway and can this
way determine the most frequent pathway length which describe the Cis→Trans transition. However,
we are mostly not interested in the length of the single pathways but rather in the timescales which
are most dominant in the allosteric transition, which is why the PDF is multiplied by the time, i.e.
𝑡 ⋅ PDF(𝑡). In Fig. 4.13, all three curves are shown: The CDF, PDF and 𝑡max𝑃 𝐷𝐹. Furthermore, the
first implied timescale 𝑡1 is shown. The good agreement between the first implied timescale 𝑡1 and
the maximum of 𝑡max ⋅ PDF(𝑡max), which indicates the dominant timescales involved, is remarkable.
Since we explicitly specified the initial and final microstate in such a way that the pathways describe the
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4. Data Generation 1: MSM on PDZ2NonequilibriumData

Cis→Trans transition, this underlines the assumption made before that the first eigenvector describes
the allosteric transition.

Figure 4.13.: Cumulative distribution function of the probability of all pathways being captured in less than
𝑡max steps. The small black points indicate the actual computed values for a length limit 𝑡max.
The derivative of the CDF, the probability density function (PDF), indicates the probability of a
certain pathway length. For a better assessment of the actual impact of the single pathways, the
PDF was weighted with the length of the pathways. the first implied timescale 𝑡1.

Inorder to interpret the individual pathways, we can investigate someproperties such as e.g. compactness
or overlays of their conformation. Here, we exemplary show and analyze two pathways. Since the most
and second most important pathway only differ in their final microstate, we analyze the most and third
important pathway instead (pathway 1 and 3).
For the examination of the compactness of a microstate, 2000 frames in each conformation were
randomly chosen and the root-mean-square deviation of atomic distances (RMSD) was calculated.
Figure 4.14 on page 62 shows the evolution of the RMSD for each microstate along pathway 1 and 3 in
a rain-cloud representation (see caption of the figure for a detailed explanation). Apart frommicrostate
46, which often follows microstate 45 and is slightly more aligned, an order-disorder-order behavior can
be observed for the 15most sampled paths. While Cis and Trans microstates are generally well aligned,
nonequilibriummicrostates usually exhibit higher disorder. Furthermore, we can see that the overlays
of nonequilibriummicrostates appearing in the MCMC pathways are usually better aligned than other
nonequilibrium microstates like e.g. the most populated one. This indicates that a certain amount
of disorder may be prerequisite to allow conformational changes from Cis→Trans, but that efficient
pathways, which are frequently sampled, do not contain such highly variable microstates.
The corresponding overlays for the pathways 1 and 3 are shown in the figures 4.15 on page 63. This
representation allows us to see which parts of the protein undergo larger changes during the allosteric
transition. While the 𝛽-sheets are generally very stable and well aligned, the 𝛼2-helix, which is shown on
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4.4. Constructing and Interpreting theMSM

top in red, is the most affected metastable structure of the protein when it comes to conformational
heterogeneity. Often already slightly distorted from the very beginning, the disorder increases in the
course of the pathway until the 𝛼2-helix becomes strongly aligned in the final Trans microstates. This
might be due to stress induced by the azobenzene photoswitch, spanned from the 𝛽2-sheet to the
𝛼2-helix, which diminishes over the 10 𝜇s of the nonequilibrium trajectories. Also noteworthy is the
𝛽2𝛽3-loop, which is marked in yellow. In all analyzed pathways, a lot of dynamics can be observed in
this area which can be explained by the fact that this loop contains relatively few contacts which leads
to a large conformational heterogeneity. Still it is well aligned in the final Trans microstates and in
particular microstate 48 sticks out as its 𝛽2𝛽3-loop has a strongly aligned, but twofold arrangement.
The second most affected loop region is the 𝛽1𝛽2-loop, which is firmly aligned at the start and the end
but disordered in between. Both loops, 𝛽1𝛽2 and 𝛽2𝛽3 seem to be distant at first but then approach
each other during the disordered nonequilibrium microstates before they are very close in the final
Trans microstates.

AMSMbased on the data selected inCh. 3was constructed in this section. The eigenvec-
tor associated with the first implied timescale of the resulting transition matrix describes
the allosteric transition from Cis to Trans at a timescale of 𝑡1 ≈ 10 𝜇s. The predictions
of timescales involved by theMCMC agree well with those of the MSM, which again
emphasizes that this eigenvector indeed describes the Cis→Trans transition.
Analyzing the pathway predictions of the MCMC, we found that they feature an order-
disorder-order behaviour, where the nonequilibrium microstates inhibit the highest
disorder. However, nonequilibriummicrostates featuring even more disorder also ex-
ist, but they do not occur in the most important pathways. As those nonequilibrium
microstates are located between a second Cis cluster, which is far away from the Trans
microstates, and the Trans cluster, it stands to reason that a high conformational hetero-
geneity of transition states may hinder effective transition.
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Table 4.3.: Most sampled pathways of the 𝜏 icor = 3000 frames = 60 ns model. MCMCwith a length of 1012
steps was performed. Initial states were the pure Cis states 41, 45, 47 and 53. The final states were
the Trans states 27, 36, 48 and 56.

i Pathway𝑖 Count [%] ∑𝑖 Counts [%]
1 45 → 46 → 10 → 56 1.642 1.642
2 45 → 46 → 10 → 27 1.639 3.281
3 45 → 32 → 30 → 9 → 37 → 48 0.621 3.902
4 53 → 21 → 13 → 9 → 37 → 48 0.472 4.373
5 45 → 21 → 13 → 9 → 37 → 48 0.451 4.825
6 45 → 32 → 46 → 10 → 56 0.423 5.248
7 45 → 32 → 46 → 10 → 27 0.423 5.671
8 45 → 32 → 30 → 44 → 37 → 48 0.343 6.013
9 45 → 46 → 10 → 9 → 37 → 48 0.339 6.353
10 45 → 46 → 2 → 50 → 27 0.333 6.686
11 45 → 46 → 2 → 27 0.332 7.018
12 45 → 46 → 2 → 27 0.309 7.327
13 45 → 32 → 30 → 9 → 10 → 27 0.304 7.632
14 45 → 32 → 30 → 9 → 10 → 56 0.304 7.936
15 45 → 32 → 2 → 50 → 27 0.244 8.179

Figure 4.14.: The evolution of the “compactness” of microstates during two of the most sampled pathways.
For the calculation of compactness, 2000 frames were randomly selected for each microstate and
the root-mean-square deviation of atomic distances (RMSD) was determined.
For every microstate, one can see a rain-cloud plot: On the left the probability density is shown.
The white point in the bar indicates the median of the distribution. The thick grey bar shows the
second quartile from the bottom to the median and the third quartile from the median up to the
top end of the thick grey bar. The smaller underlying grey line shows the interval which contains
9 5% of all data points. 100 randomly selected data points are shown in order to illustrate the
PDF. The colors correspond to the usual Cis/Trans colors which are used in Tab. 4.2.
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45 46 10 56

45 32 30 9 37 48

Figure 4.15.: Top: The most probable pathway. Bottom: The third most probable pathway. 100 randomly
selected overlays are plotted for each microstate occuring in the pathway. While the 𝛽-sheets
(marked in ) are relatively closely aligned, in particular the 𝛼2-helix (marked in red) and the
𝛽2𝛽3-loop (marked in yellow) seem to undergo major changes.
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Statisticians, like artists, have the bad habit of falling in love with their models.

George E.P. Box

In the last chapter we constructed a MSMwhich is able to describe the Cis→Trans allosteric transition,
but it has its limits. For the underlying set of data, we saw that the first three microseconds of the
equilibrium trajectories were not yet equilibrated and that they heavily overlapped which is why we
discard them in the following. By building a secondMSM based on newly chosen coordinates, we want
to check to what extent the predictions of the MSM are reliable and reproducible when improving the
reliability of the data. Furthermore, we examine whether the discard of the first 3 𝜇s of the equilibrium
trajectories leads to a more clear-cut separation between Cis and Trans and hence to a preciser predic-
tions about nonequilibrium states involved in the allosteric transition.
Instead of choosing important contact-distances by hand, we are now using a method based on su-
pervised machine learning in order to identify a small set of essential contact-distances (see Sec. 5.1).
Besides facilitating the construction of a secondMSM, the results from the decision tree used by the
machine learning approach are also interesting for making assumptions about the complexity of the
system or pointing out important mechanisms. We find that this resulting set of “essential coordinates”
is—due to the collective motion of many contact-distances—still correlated which is why we subse-
quently perform a correlation analysis of the remaining distances (see Sec. 5.2). This way we reduce the
initial set of 429 contact-coordinates down to 54, on which we eventually construct a secondMSM
after PCA and clustering. Since most of the steps necessary for the construction of a MSM should look
familiar by now, we will refrain from discussing them in great detail, but instead refer to the chapters
3 and 4. TheMSMwill be coarse grained by dynamical lumping, a newly introduced technique (see
Sec. 5.5), in order to allow statistically sound statements about the allosteric transition (see Sec. 5.6).
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5.1. Feature Importance

Brandt and Sittel developed a machine learning decision tree based on XGBoost [72] which assigns
unknown MD data points—given by contact-distances in our case—to the microstate they most
probably belong to [45]. As we will see in the following, it iteratively improves the prediction of
assigning the MD structures to a specific microstate by creating a decision tree for each microstate.
7 0% of the MD data, represented by the contact-distances from Fig. 3.2 were used to train the model
to assign a single frame 𝑟𝑟𝑟 = (𝑟1, ..., 𝑟𝑛) to the resulting microstates from clustering obtained in Sec. 3.4
and the remaining 30%were retained for testing the accuracy. On the basis of the test set, the model’s
accuracy can be estimated by counting how many of the frames are correctly assigned 𝜖 = 𝛮correct

𝛮 in
respect to the total number of frames𝑁 (multiclass error,𝑁correct is the number of correctly assigned
frames). Furthermore, the accuracy of the classification for one particular microstate 𝑖 is calculated as
well: 𝜖𝑖 =

𝛮𝑖 ,correct
𝛮𝑖

− 𝛮𝑖 ,incorrect
𝛮 , where𝑁𝑖 ,correct denotes the frames correctly assigned to microstate 𝑖, while

𝑁𝑖 ,incorrect stands for the erroneously assigned frames. Latter penalizes miscalculation and prevents the
formation of one “trash”-state which contains all MD frames whose classification is not entirely clear.
By optimizing a loss function containing the number of erroneously classified frames and the tree size
the model is adjusted. By holding the tree size as small as possible, overfitting is prevented.
We measure the importance of different coordinates for the microstates classification by evaluating how
impactful a move in the decision tree is regarding that contact-distance. Sorting all contact-distances by
their importance, we either discard the most or the least important contact-distance successively and
reiterate the procedure by retraining the model for the remaining contact-distances:

• Removing the most important contact-distance (RMI). We iteratively remove the most important
coordinate in order to access “hidden” important contact-distances. As the dynamics of PDZ2 is
highly correlated in terms of contact-distances, collective motion related to the most important
contact- distance may overshadow other important, but independent contact-distances in PCA.
Therefore, the most important contact-distance is removed in each iteration to clear the way for
other important and uncorrelated ones.

• Removing the least important contact-distance (RLI). In order to filter out all nonessential
contact-distances from the data set, the least important contact-distances is discarded in each
iteration.

While we identify the most important contact-distances by iteratively removing the most important one
from the set and therefore enable to assess its overall importance independent of the other coordinates,
we use RLI to greatly reduce the number of total contact-distances by filtering out all nonessential
contact distances [45]. Matthias Post set up the algorithm on the basis of the model constructed in
Ch. 4 for both approaches (RMI and RLI) in order to combine their predictions. Figure 5.1 shows
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Figure 5.1.: Accuracy 𝜖 evolving by removing the least important coordinate. Left: themean for all microstates,
all microstates individually. Right: The microstates of the most sampledMCMC pathway (see

Sec. 4.4). Data provided byMatthias Post.

the evolving accuracy 𝜖 by removing the least important contact-distance for all microstates on the
left and for the microstates of the most important pathway of the model based on data generation 1
on the right (see Fig. 4.15). One can see, that the microstates along the most important pathway can
still be well resolved using only 10 contact-distances or less. For the microstate classification in general,
even after ∼380 discarded contact-distances there is no real drop in accuracy visible which suggests
that the dynamics of PDZ2 is indeed governed by the collective motion of relatively few distances and
that many contact-distances are equally able to discriminate the microstates. This means that one can
greatly reduce the number of contact-distances and still end up with an accurate description of the
system. Furthermore, the model can in particular be trained to discriminate states of major interest
such as, e.g., the microstates along the most probable pathway. Combining the most important contact-
distances resulting from both approaches and the most important contact-distances for discriminating
the microstates along the most sampled pathway, the 429 initial contact-distances (see Fig. 3.2) can be
reduced down to 7 7 (RMI ∪RLI ∪ Pathway 1).
The two most essential contact-distances are 𝑟19 ,27 and 𝑟64,7 4, which describe the relative motion

between the 𝛽1𝛽2-loop and the 𝛽2𝛽3-loop and the relative distance between the 𝛽4𝛽5-loop and the 𝛼2-
helix, respectively. The second most important contact-distance, 𝑟64,7 4 was expectable as the azobenzene
photoswitch lies very close-by and forces this coordinate to change significantly upon the Cis→ Trans
transition. Also the most important contact-distance 𝑟19 ,27 agrees perfectly with the observations made
by inspecting the most important pathways resulting from theMCMC simulation. There, we found
that the distance between the 𝛽1𝛽2 and the 𝛽2𝛽3-loop decreases during the Cis→Trans transition.
However, one must mention here, that the algorithm used the MSM from Ch. 4 as a reference for
evaluating the importance of each contact-distance in the set of the 429 already manually preselected
contact-distances. Therefore, we could only achieve a reduction of the number of contact-distances and
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an identification of the most important ones. It would have been even more useful to use all possible
input coordinates as input, which is due to the enormous computational effort not feasible.

...what the machine learned.
We trained a machine learning algorithmwhich is based on decision trees with the initial
contact-coordinates and the clustering from Ch. 3 and this way were able to reduce
the number of contact-distances down to 7 7 which are considered to be particularly
essential. The predictions for the most important contact-distances fit very well with
the observations from theMCMC simulations for theMSMbased on data generation 1.

5.2. Correlation Analysis

Despite removing the least important coordinates in the last section, the 7 7 contact-distances yielded
by the machine learning algorithm are still not completely uncorrelated but require further reduction.
To this end, the correlation matrix of those 7 7 contact-distances was calculated and is shown on the
left hand side in Fig. 5.2. Still, 36 off-diagonal elements representing strongly correlated contact-
distances, i.e. feature a correlation of higher than 80%, can be identified. While most of the highly

Corr

Figure 5.2.: Left: Correlation matrix of the 7 7 contact-distances resulting from the XGBoost decision tree
studies. Only values |Corr(𝑟𝑖 ,𝑗, 𝑟𝑘,𝑙)| ≥ 0.2 are shown. Right: Free energy projection onto the
contact-distance 𝑟28,56 and 𝑟28,57 .
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Figure 5.3.: Time trace of the contact-distances 𝑟28,56 and 𝑟28,57 . Their absolute values have been divided by their
mean value in order to facilitate comparability. The gap in the middle indicates the range of the
short 1.1 𝜇s nonequilibrium trajectories which are not shown for the sake of clarity.

correlated distances lie close to each other and are represented by entries close to the diagonal (consider
e.g. distances 𝑟28,56 and 𝑟28,57), other entries are located far away from the diagonal (e.g. 𝑟23,80 and 𝑟57 ,80)
and represent contact-distances whose correlation is not immediately obvious.
Before we discard highly correlated contact-distances, we need to confirm whether they indeed contain
almost identical information. For this purpose, the free energy [see Eq. (2.11)] is plotted along those
contact-distances that could qualify to be sufficiently represented by only one contact-distance. This is
shown exemplary for the distances 𝑟28,56 and 𝑟28,57 on the right hand side of Fig. 5.2. The free energy
along both contact-distances is approximately diagonal which indicates that both coordinates behave
almost identical. If the shape would differ significantly from the diagonal shape, this would indicate
that one coordinate contains information which cannot be resolved by the other coordinate. To
illustrate that two coordinates which are characterized by a diagonal shape of their free energy do
indeed contain almost identical information, the time trace (all 10 𝜇s trajectories concatenated) of
both contact-distances is shown in Fig. 5.3—the time traces of both distances are almost identical.
Both time traces were first normalize them by dividing by their mean value in order to facilitate the
comparison. By repeating this procedure for all pairs of strongly correlated contact-distances, the initial
7 7 contact-distances could be reduced to 54.

The correlation analysis of the set of contact-distances yielded by the XGBoost decision
tree approach allowed to further reduce thenumber of input coordinates by 30%. Instead
of 7 7 contact-distances, only 54 were retained.
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5.3. PCA, Clustering and Coring

The set of 54 contact-distances, which was obtained in the last section, is used to repeat the steps 2–4
of the workflow (see Sec. 2.7). As in Sec. 3.3, the PCA was first performed only on the equilibrium
data in order to calculate reaction coordinates that maximize the variance between the Cis and Trans
conformations of the protein. In a subsequent step, the nonequilibrium data was projected onto the
eigenvectors of this PCA. The tests which were performed in Sec. 3.3 show better results for the PCs
𝑥1–𝑥6 compared to the 𝑥1–𝑥5 and 𝑥7 , used for data generation 1 (see Fig. A.5–A.8 on the pages 89-91
for of the the cumulative fluctuations, the temporal evolution along the PCs, the ACF plots and the grid
representation of the two-dimensional free energy projections) Since the number of input coordinates
was greatly reduced, we find that the first 6 PCs now cover almost 7 0% of the overall variance within
the set of input coordinates, which is about 10%more than before. Also due to a smaller number of
input coordinates, we fine a smaller clustering and lumping radii, which decreased compared to the
ones obtained in Sec. 3.4 from𝑅 = 𝑑lump = 0.9 4 to𝑅 = 𝑑lump = 0.34 by a factor of

0.34
0.9 4 = 0.36. This

corresponds approximately to the reduction which was expected due to geometrical considerations
[√ 42954 = 0.38, see Eq. (2.12)].
We decided to cluster 52 microstates, of which none was detected as trap state. There are two possi-
ble reasons for the disappearance of trap states: Firstly, the PCs are different now and the MD data
is projected slightly different onto the microstate space which could prevent the formation of a trap
state. Secondly, the PCs now used for clustering could describe additional or different dynamics that
are essential for the trajectory to leave the trap state. Just as before, the resulting microstates trajectory
was noise-corrected and iteratively cored with 𝜏 icor = 60 ns.

Comparison of the Clustering in BothModels

We further analyze how the new PCA and clustering affect the definition of the microstates. With
almost the same number (52 vs. 56) of microstates it is convenient to compare how eachMD frame is
projected onto the discrete microstate space𝛺. By doing this, we check whether certain microstates
exist which represent universal, essential conformations of the protein and are therefore equally present
in both microstates trajectories. Fig. 5.4 shows a comparison of both trajectories where we compare
each frame one by one and map their connection for each microstate. It is apparent that not a single
microstate is present which appears identically in both trajectories. On the one hand, we see for some
microstates, that it is more likely that they are rather uniquely assigned to another microstate from
the respective other trajectory. If we study the graph from top to bottom, these are—to name some
examples—the microstates 10 → 15, 19 →, 28 → 27, 29 → 36, 44 → 46 and more. On the other
hand there aremicrostateswhich are assigned to amultitude of othermicrostates, e.g. for data generation
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Figure 5.4.: Comparison of themicrostateswhichwere found for data generation 1 (bottom) and data generation
2 (top). Since data generation 2 discards them, the frames of the first 3 𝜇s of all equilibrium
trajectories had to be deleted in data generation 1 as well, which is why Cis and Trans microstates
are sometimes smaller than subsequent nonequilibrium microstate. The colors do not specify
characteristics of the microstates and only serve to facilitate the assignment.

2 themicrostates 1, 2, 4, 8, 23 or 40. For data generation 1, we identify, for example themicrostates 2 to 7,
9, 18 and 19, 38, 54 and many more. Interestingly, we find predominantly equilibriummicrostates (Cis
and Trans, see tables A.2 and 4.2) to be relatively uniquely assigned, while nonequilibriummicrostates
are often not uniquely mapped but assigned to a great number of microstates in the other trajectory.
This is most probably due to two reasons: In the first place, we use exclusively the equilibrium data
to calculate the PCA correlation matrix in order to prioritize a high resolution for the Cis and Trans
initial/final microstates. Secondly, we saw in the last chapter that Cis and Trans conformations feature
a lower heterogeneity within their microstates while nonequilibrium conformations are often more
variable. Consequently, equilibriummicrostates are characterized by a lower free energy minima with
better defined microstate borders. In contrast, nonequilibriummicrostates require more volume in
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the conformational space which causes border regions to overlap andMD frames located within this
regions are easily assigned to a different microstate once the definition of the PCs changes slightly.

A PCA was performed on data generation 2 and the PCs 𝑥1–𝑥6 were selected for the
subsequent clustering. This resulted 52 microstates which were again cored with a
coring time of 𝜏 icor = 60 ns. Comparing the resulting microstate trajectory with the
microstate trajectory of data generation 1, we find that equilibriummicrostates are more
likely to be relatively uniquely mapped while nonequilibriummicrostates usually get
widely spread mapped.

5.4. Construction of theMSM

Again, the MSM was set up with a lag-time of 𝜏lag = 60 ns. Similar to before, Trans microstates are
peculiarly strongly represented in the stationary distribution and the first eigenvector splits Cis and
Trans apart from few exceptions (see Fig. 5.5). In contrast to before, the first implied timescale decreases
from 10.0 𝜇s to 7 .5 𝜇s (see Fig. A.9). One reason for this might be the fact that we did not identify any
trap state in data generation 2. Reassigning the trap state in data generation 1 to the microstate visited
before yields a highly metastable microstate which could ultimately prolong the dynamics.
We consider Fig. 5.6 for the representation of the network and we do not pay attention to the colored
markings yet. In contrast to data generation 1, an improved separation of Cis and Trans is evident.
Thus, the majority of non-equilibriummicrostates now lies between the pure Cis microstates and the
large cluster of strongly interacting microstates—mostly Trans microstates—on the right while we
find a cluster of Cis microstates, i.e. 32, 45 and 46, to be closely located to the Trans cluster in data
generation 1. This is a strong indication that the machine-preselected and shortened input coordinates

Table 5.1.: Most sampled pathways of the MSM based on data generation 2. AMCMC-simulation with 1012
steps was performed. Initial states were the pure Cis states 35, 44 and 46. The final states were the
Trans states 28, 33, 36 and 52.

i Pathway𝑖 Count [%] ∑Counts [%]
1 35 → 19 → 47 → 25 → 18 → 28 0.252 0.252
2 46 → 30 → 11 → 18 → 28 0.242 0.494
3 46 → 30 → 1 → 25 → 18 → 28 0.206 0.700
4 46 → 30 → 1 → 37 → 27 → 23 → 36 0.122 0.822
5 44 → 14 → 3 → 43 → 33 0.116 0.938
6 35 → 14 → 3 → 43 → 33 0.102 1.041
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in data generation 2 result in a clearer separation between Cis and Trans.
Again, we consult a MCMC-simulation in order to calculate the most important pathways and thus
identify mechanisms which play a crucial role. For the initial states we chose the pure Cis microstates
35, 44 and 46 and as final state the relatively pure Trans microstates 28, 33 and 52 (all Trans microstates
with a Trans share higher than 88.5%). The results of the MCMC simulation are depicted in Tab. 5.1.
Just like predicted by the MCMC simulation based on data generation 1, these pathways again feature
an order-disorder-order behaviour (see Fig. A.10 on page 93). A closer look at Tab. 5.1 reveals that
the contributions of the most important pathways is very small. Compared to data generation 1,
we expected the numbers to be smaller, since we are now faced with much more nonequilibrium
microstates which are located in between the Cis and Trans cluster which ultimately increases the
combinatorial possibilities significantly. So, the first six most important pathways only account for little
more than 1% of all sampled pathways. This is still not a small amount compared to the enormous
amount of combinatorial possibilities, but it is difficult to make statistically relevant statements about
the underlying mechanisms of the Cis→Trans transition.

The MSM based on data generation 2 splits the Cis and Trans clusters in such a way,
that the transition from the initial Cis to the final Trans microstates is dynamically well
described by the nonequilibriummicrostates in between. This suggests that the PCA
projection calculated only on the last 7 𝜇s of the equilibrium data is more reasonable
than for the PCA projection which was calculated for data generation 1. However,
this also leads to significantly smaller contributions of the most important pathways
which describe the Cis→Trans transition to the overall MCMC trajectories, since those
nonequilibriummicrostates now appear as possible nodes. This makes it considerably
more difficult to make statistically verifiable statements.
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'
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Figure 5.5.: Top: Population of the states found in the data. We define 𝑣 ′𝑗 ≡ sgn(𝑣𝑗 ,𝑖)√|𝑣𝑗 ,𝑖|. Middle: Stationary
distribution predicted by the MSM. Bottom: The first eigenvector which indicates the slowest
occurring process.

Figure 5.6.: Network representation of the 𝜏 icor = 60 ns MSM based on data generation 2. The edges are
weighted by 𝑃 eq

𝑖𝑗 𝑇𝑖𝑗 and the size of the nodes is proportional to their stationary distribution. Cis
microstates are marked in orange , Trans microstates in blue , Neq in white and the ambivalent
microstates in violet . Cluster of microstates which are marked by a colored area are lumped due
to the dynamical lumping algorithm (see Sec. 5.5).
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5.5. Dynamical Lumping

In order to increase the relevance of the most important pathways which result from the MCMC-
simulation by increasing their contribution to theMCMC trajectory, we introduce a method called
dynamical lumping. The idea is to accept small losses in the structural homogeneity of the microstates
by lumping kinetically close microstates and thus to increase their relevance, to consequently make
pathways along these lumped microstates more relevant. It lumps microstates according to their kinetic
connectivity and is inspired by theMost Probable Path algorithm [73]. In contrast to this approach,
however, dynamical lumping does not take the population of a microstate into account, but lumps
them only according to their transition rates 𝑇𝑖𝑗. For a system like PDZ2, which is actively driven out
of its equilibrium conformation, this has proven to be advantageous, since very metastable microstates
are usually not the highest populated states in the data and are therefore systematically penalized by the
Most Probable Path algorithm. The application of theMost Probable Path algorithm would therefore
merge states particularly into highly populated nonequilibrium states, which are expected to have a
short lifetime for PDZ2.
Application on PDZ2 ⋅The exact implementation is explained in form of a pseudocode in Algo-
rithm 1 (see Appendix, page 94). Applied on the microstate trajectory and the model of the last section,
the dynamical lumping algorithm lumps themicrostates according to the dendrogram shown in Fig. 5.7.

Figure 5.7.: Top: Dendrogram which indicates the metastability of the microstates. If two lines are merged,
it means that the left microstate is lumped into the right microstate. The grey area indicates
the selected𝑄min−threshold under which all microstates are merged. Lines above indicate the
microstates which remained in the final trajectory after lumping. Bottom: Relative state population
of each microstate.

7 5



5. Data Generation 2: MSM Based onMachine Learned Coordinates

Microstates which are dynamically well connected are positioned side by side, where the microstate
on the right always possesses a higher metastability. Once the metastability of the left microstate falls
below the required metastability𝑄min, we see a horizontal line connecting both microstates and the
left microstate is lumped into the right one. Here we can freely decide which value of𝑄min we choose
for different microstates—so we have, for example, left pure Cis or Trans microstates untouched, as
we want to preserve a high structural resolution in the initial and final states. An exception to this
is the pure Trans microstate 52, which is kinetically so closely connected to the Trans microstate 38.
Microstate 38 is nearly a pure Trans microstate as well and is therefore considered as final microstate
and its much higher connectivity to intermediate nonequilibriummicrostates prevents anyMCMC
trajectory from reaching microstate 52. The final state lumping is indicated by the grey area in Fig.
5.7. All microstates which are connected by a horizontal line within this area are lumped together. In
order to better understand whether such a lumping is reasonable, the lower part of the plot shows the
microstate’s relative population in shares of Cis, Trans and nonequilibrium. This way, we make sure
that we do not accidentally lump Cis microstates with Trans microstates or Trans microstates with Cis
microstates, respectively. The clusters of actually lumped microstates are indicated by the colored areas
in the network representation shown in Fig. 5.6.

The dynamical lumping algorithm allows to merge microstates reliably according to
their metastability. We applied the dynamical lumping algorithm on the microstate
trajectory based on data generation 2 and this way reduced the number of microstates
from 52 to 35.

5.6. Coarse-GrainedMSM

By means of the dynamical lumping algorithm, the total number of microstates was reduced from 52
down to 35. The dynamical network representation of the resultingMSMwith 𝜏lag = 60 ns is shown in
Fig. 5.8. The eigenvector of the first timescale still splits Cis and Trans microstates suggesting that it
is still describing the allosteric transition from Cis→Trans (see Fig. A.12). In order to verify whether
dynamical lumping has led to statistically more reliable statements, another MCMC simulation with
1012 steps is performed and the most important pathways are shown in Tab. 5.2.
The most important pathways are now sampled much more frequently than before (compare Tab. 5.1).
As a result, the most important five pathways now account for 3.7 % instead of only 1.0% as before
lumping. More remarkable, however, is the fact that the microstate sequence 6 → 7 → 5 is strikingly
frequent—not only in the 10most important pathways, where this sequence occurs six times. It can
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therefore be considered as the most important intermediate path. Consequently, this makes this se-
quence an excellent subject for the study of the allosteric transition in PDZ2.
We consider Fig. 5.9 on page 80 for an overlay representation of the contributing microstates including
two initial and final microstates (pathways 2–5). In accordance with theMSMbased on data generation

Figure 5.8.: Network representation of the resulting MSM of the microstate trajectory obtained by dynamical
lumping according to Fig. 5.7.

Table 5.2.: The most important pathways predicted by aMCMC simulation of the length of 1012 steps. The
sequence 6� 7� 5 appears in many pathways.

i Pathway𝑖 Count [%] ∑Counts [%]
1 32 → 23 → 1 → 8 → 22 1.062 1.062
2 31 → 6 → 7 → 5 → 27 0.698 1.760
3 31 → 6 → 7 → 5 → 21 0.696 2.456
4 26 → 6 → 7 → 5 → 27 0.619 3.075
5 26 → 6 → 7 → 5 → 21 0.618 3.694
⋮ ⋮ ⋮ ⋮
9 31 → 6 → 7 → 5 → 13 → 27 0.358 5.556
10 26 → 6 → 7 → 5 → 13 → 27 0.319 5.874
⋮ ⋮ ⋮ ⋮
13 31 → 6 → 7 → 3 → 28 → 24 0.260 6.721
⋮ ⋮ ⋮ ⋮
29 31 → 6 → 7 → 3 → 5 → 21 0.189 10.44
⋮ ⋮ ⋮ ⋮
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5. Data Generation 2: MSM Based onMachine Learned Coordinates

1, one can again observe a clear order-disorder-order behaviour. This time we refrain from showing
another RMSD plot, because the order-disorder-order is clearly visible to the naked eye in Fig. 5.9.
Also the 𝛽1𝛽2- and 𝛽2𝛽3-loop regions, in which XGBoost detected one of the most important contact-
distances for the Cis→Trans transition, behaves similarly as before: At the beginning still far away,
both loops approach each other along the path until they are very close. And also the already observed
ordering of the 𝛼2-helix is reflected along the most important intermediate path and can be seen in
more detail in the grey area in Fig. 5.9: slightly disordered in the Cis microstates as 310-helix, the 𝛼2-helix
becomes highly disordered in the initial intermediate nonequilibriummicrostate and then realigns itself
more and more towards the final Trans microstates, where it ends up highly ordered. This might be due
to stress induced by the azobenzene photoswitch which is connected to the 𝛼2-helix and is switched to
its Trans-conformation at the beginning of the nonequilibrium trajectories pushing the 𝛼2-helix away
from the 𝛽2-sheet. The data shows that the 𝛽-sheets are more stable than the 𝛼-helices. The stress in-
duced by the photoswitch looks for the weaker point which results in temporally induced deformations
within the 𝛼2-helix until the stress in the system disperses.
Furthermore, we observed in the last chapter, that highly disordered intermediate microstates do not
participate in effective pathways. This is not the case here, as microstate 1—representing the microstate
with the highest disorder (see Fig. A.11)—already appears in the most important pathway. Consid-
ering the dynamical network representation of this model in Fig. 5.8, we see that the second highest
disordered microstate 3 is located in between microstate 7 and microstate 5 and is connected strongly
to both of them. Nonetheless, the sequence 6 → 7 → 3 does not appear until pathway 27 , which is
besides the addition of the highly disorder microstate 3, identical to the third most important pathway.
Microstate 3 is in fact the secondly highest disordered microstate overall (see Fig. A.11). Even though
one node more is required for this pathway and the probability for this pathway is therefore reduced, it
is remarkable that the direct jump frommicrostate 7 to 5 is favored and—despite less connectivity—
almost four times more sampled. We cautiously mention here that this might be yet another sign that
highly disordered microstates are preferably avoided in allosteric transitions for PDZ2—that is, if it is
possible (see microstate 1).
However, the intermediate nonequilibrium and the final Trans microstates also reveal a small disadvan-
tage of the lumping method, namely a lower conformational resolution of the microstates, which is
evident when comparing Fig. 5.9 with pathways of the MSM before lumping in Fig. 4.15. As several
microstates, which are initially clustered according to a high conformational homogeneity, are now
lumped together, the conformational resolution suffers. Nevertheless and despite the coarser model, we
were still able to make precise observations for which we can now provide a statistically more relevant
foundation—a rewarding tradeoff.
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5.6. Coarse-GrainedMSM

Applying the dynamical lumpingmethod, we were able to lump themicrostates in order
to find a coarse-grained model which still describes the allosteric transition from Cis to
Trans conformation. This lumping procedure allowed to identify a sequence of interme-
diate states which occurs in a large variety of pathways which describe the Cis→Trans
transition. Analyzing this sequence in detail revealed that the 𝛽1𝛽2–𝛽2𝛽3 region plays a
decisive role in the allosteric transition for PDZ2, which is in line with the predictions
of the XGBoost decision tree and the MSM based on data generation 1 constructed
in Ch. 4. Moreover, it was found that the 𝛼2-helix, which is linked to the azobenzene
photoswitch, also undergoes conformational changes during the allosteric transition.
These are manifested by the fact that the 𝛼2-helix always ends up being stable despite
featuring a larger conformational heterogeneity along the intermediate microstates. The
order-disorder-order behaviour seems to emerge as an universal principle in the allosteric
transition of PDZ2, as it was observed in both models independently of the input coor-
dinates and the projection of the MD data.
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5. Data Generation 2: MSM Based onMachine Learned Coordinates

Figure 5.9.: 100 overlays per state of the states appearing along the most important pathways. The microstate
sequence 6 → 7 → 5 occurs with striking frequency. The structures that are shown in the grey box
are overlays of the𝛼2-helix for the states 6, 7 and 5 and are shown separately for a better visualization.
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6. Conclusion andOutlook

Das ist ein weites Feld.

Effie Briest

This thesis addressed the complete transition mechanisms involved in the Cis→Trans allosteric transi-
tion of the photoswitchable PDZ2 protein. To this end, we employed a state-of-the-art six-foldworkflow
onto a vast ensemble of equilibrium and nonequilibrium trajectories in order to shed light on the
underlying mechanisms that govern the allosteric transition in the protein and to explore whether they
are of dynamical or conformational nature.
In the following we summarise our findings and discuss possible future projects.

Summary

We extracted the internal motion of the protein in Ch. 3 for obtaining microstates representating
the protein’s metastable conformations. To do so, different input-coordinates such as C𝛼-distance or
contact-distance have been examined for their suitability. We found that contact-distances are more
appropriate as fast side chain dynamics appear to play a crucial role in the allosteric transition. This is
in line with other investigations [29]. Depending on their ability to discriminate Cis and Trans confor-
mation, we chose a set of 429 contact-distances and performed an equilibrium principal component
analysis on this data. In a subsequent step, the nonequilibrium data was projected onto the resulting
eigenvectors of the equilibrium principal component analysis. The resulting free energy projections
indicated a clear separation between Cis and Trans conformations and six suitable principal compo-
nents were selected for the consequent clustering. For this purpose, we applied the clustering method
by Sittel [49] in order to cut the microstates along their free energy barriers. Nevertheless, those barriers
are sparsely sampled and artifacts due to dimensionality reduction are inevitable which often lead to a
misclassification of frames at the states borders.
Chapter 4 therefore considers ways to correct these misclassifications via the application of dynamical
coring [26]. Dynamical coring requires the trajectory of the microstate to spend at least a minimum
coring time 𝜏cor in a new state and discards changes in the microstate trajectory which happen on shorter
timescales. 𝜏cor is the only input parameter of dynamical coring which can be estimated by demanding
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6. Conclusion andOutlook

a mono exponential decay of the microstate population probabilities. However, for PDZ2 we find
that the coring time suggested by this heuristic must be further extended in order to obtain a Markov
description of the system’s dynamics in terms of the microstates trajectory. Applying dynamical coring
on these timescales alters the microstate trajectory significantly and introduces spurious artifacts which
contradict the molecular dynamics data. We therefore introduce an iterative coring method which does
not cause these artifacts and, thus, yields a significantly improved representation of the actual molecular
dynamics data in terms of the microstate trajectory.
Based on the cored microstate trajectory we constructed a Markov state model which is able to describe
the allosteric transition from the Cis to the Trans conformations of the protein. The resulting Markov
state model is capable of describing the nonequilibrium transition as its stationary distribution differs
from the distribution found in the MD data in that Trans states are higher populated. However, a large
number of the nonequilibriummicrostates were not projected between the Cis and Trans clusters and
consequently did not contribute to a detailed description of the allosteric transition. In addition, it was
found that the first 3 𝜇s of the equilibrium trajectories were not yet fully equilibrated and that Cis and
Trans heavily overlap during this time.
In order to investigate whether the positions of the nonequilibriummicrostates are stemming from a
projection error or rather are a result of biased simulation seeds, the above mentioned first three mi-
croseconds of each equilibrium trajectory were discarded. We also used a machine learning algorithm to
reduce the number of input coordinates and retained only those contact-distances which are crucial for
a description of the allosteric transition in terms of our previousMarkov state model. Combining both,
the shortened equilibrium trajectories and the smaller number of contact-distances, we projected the
molecular dynamics data onto a new microstate trajectory in Ch. 5. In this projection, the nonequilib-
rium states are able to provide a detailed picture of the allosteric transition from Cis to Trans:

Important Transition Regions ⋅We found that the allosteric transition of PDZ2 is governed by
an order-disorder-order principle which is primarily fueled by the very flexible 𝛽2𝛽3- and 𝛽1𝛽2-loop.
But also the more stable 𝛼-helices were not unaffected—in this respect we detected an initial deforma-
tion in the 𝛼2-helix once the azobenzene photoswitch mimicked the docking of a ligand by pushing the
𝛼2-helix and the 𝛽2-sheet away. Subsequently, a structural reorganization process in the course of the
allosteric transition leads to a highly arranged 𝛼2-helix. Whether this also occurs in the wild-type PDZ2
without photoswitch or rather is an artifact due to the design of the photoswitch, which may introduce
too much internal stress, and to what extent this affects the conclusions here, is a question that remains
open for further studies.

Allostery ⋅ Finally, we to put the findings of our research into perspective on the discussion about
allostery. As mentioned at the beginning of this thesis, there is an ongoing debate on whether allostery
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is either being governed by underlying dynamical or conformational processes. We analyzed vast data
on both allosteric equilibrium-conformations (Cis and Trans) as well as the nonequilibrium transition
between them. Using a spatially high-resolutionmethod for dimensionality-reduction, namely principal
component analyis, we obtained reaction coordinates which well separate Cis and Trans. In both,
the free energy landscape and the clustered microstates, we saw distinct differences between the Cis
and Trans conformation. Furthermore, we were able to make precise predictions about the allosteric
transition by analyzing the nonequilibrium pathways. Also by means of this investigation we were
able to identify significant changes in the conformation of the protein in the course of the allosteric
transition. On the other hand, the strong disorder in the intermediate states indicates that dynamical
processes also play a role and that, although all states can be clearly distinguished by their conformation,
particularly nonequilibrium states are subject to strong dynamics. To conclude, it seems difficult to
describe allostery exclusively as an clear-cut dynamical or structural process but it rather appears to be
an interplay of both.

Outlook

The central pillar of Markov state modeling is the separation of timescales between slow interstate tran-
sitions and fast intrastate fluctuations. We saw that artifacts from dimensionality reduction significantly
affect the quality of this separation, but with dynamical iterative coring we have a powerful tool at hand
to correct those artifacts.
We consider the question why coring times are necessary which are higher than the ones suggested
by theoretical considerations in order to find and better understand possible drawbacks in our work-
ing pipeline. In the end, it all boils down to the same cause. Barriers are overseen which leads to a
wrong connectivity of the microstates. Reasons therefore can be manifold. For example, it may be that
the projection onto a lower dimensionality merges two different metastable conformations into one
microstate—despite being separated by a free energy barrier. If both, originally separated metastable
conformations feature substantially different connectivities to a third microstate, this would conse-
quently result in two timescales for the same transition which cannot be covered byMSM. Only by
using significantly longer coring times processes occurring on shorter time scales are eliminated and
the system consequently looses its memory. While this is necessary to describe the dynamics in terms
of a Markov state model, a lot of information on shorter time scales gets lost, even though it was ob-
tained with an immense computational effort. One possible remedy for reducing artifacts introduced by
dimensionality reduction could be the application of modern non-linear, machine learning dimension-
ality reduction methods, such as e.g. VAMPnets [74] or auto-encoder based methods [51, 75]. Similar
or identical effects can also result from the clustering process. Recently it was shown that the method
used here, namely robust density clustering [49], has problems with clusters which are poorly separated
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6. Conclusion andOutlook

and partly overlap [76]. In Ref. [76],Westerlund and Delemotte proposed a clustering algorithm called
InfleCS which is based on a Gaussian mixture free energy estimator and that is able to distinguish mul-
tiple, overlapping clusters with high precision.
Another problem, closely related to dimensionality reduction, is the preselection of the right data which
is to be clustered. As mentioned before, one requisite for the construction of a Markov state model is
the separation of timescales between the fast intrastate fluctuations and the slow interstate transitions.
We argued that these slow interstate motion is resolved by the first few principal components and that
fluctuations are aggregated in the remaining principal components. In an ideal world, these essential
principal components are unmistakably separated from the rest by vast differences in the decay of their
autocorrelation function. However, for PDZ2 the selection of a few principal componentents was not
a matter of course and discarded principal components could still contain valuable information. Ro-
driguez and Laio therefore proposed a method which clusters the data without the preceding reduction
of dimensionality [77]. This way it can be ensured that all important data is taken into account.
While most of the methods mentioned here are still in their infancy and require more work to yield
valuable results apart from toy models, there is one further point concerning simulations, which could
possibly be worth mentioned. We have seen that the conformational change of the azobenzene photo-
switch significantly affects the stability of the 𝛼2-helix. Prominently linked across the binding groove,
the photoswitch energetically imposes a considerable structural change on PDZ2 upon activation. By
the investigation of a slightly different PDZ domain, Petit et al. showed that less invasive modification in
N-terminus of the protein reduces the affinity of binding a ligand by 21-fold [29]. Preparing and simu-
lating such a less artificial construct could lead to an improved accordancewith the real wild-type system.

Toconclude, thehere constructedMarkov statemodel is capable of describing the allosteric transition—
an intrinsic nonequilibrium process. Nonequilibrium processes drive many of the very fundamental
processes that occur in living systems—from gene transcription to photosynthesis—and unraveling
them leads to an ever better understanding of life itself. In the words of Feynman, with which we started
the thesis:

“...if we were to name the most powerful assumption of all, which leads one on and on in an
attempt to understand life, it is that all things are made of atoms, and that everything that
living things do can be understood in terms of the jigglings and wigglings of atoms.”

A task like tailor-made for molecular dynamics simulations and their analysis—including Markov state
models.
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A.
Appendix

Nature uses only the longest threads to weave her patterns, so each small piece of her fabric
reveals the organization of the entire tapestry.

Richard P. Feynman

Contribution of Single PCs to the Overall Variance

The contribution of some selected PCs to the overall variance in the data set of data generation 1 is
shown in the table below. The PCs 𝑥1–𝑥5 and 𝑥7 yield an effective description of the dynamics as they
contribute with 56.2 % to the overall variance. The remaining 423 PCs cover 43.8% of the variance in
the data.

Table A.1.: Data generation 1: Contribution of some PCs (𝑥𝑖) to the overall variance of the system and the
cumulative sum of it.
𝑥𝑖 𝜆𝑖 ∑𝑖

𝑗=1 𝜆𝑗/(∑𝑘 𝜆𝑘)

1 0.2593 0.2593
2 0.0997 0.3590
3 0.0731 0.4315
4 0.0607 0.4928
5 0.0456 0.5284
6 0.0344 0.5628
7 0.0334 0.5962
8 0.0305 0.6267
9 0.0233 0.6500
10 0.0209 0.6709

𝑥𝑖 𝜆𝑖 ∑𝑖
𝑗=1 𝜆𝑗/(∑𝑘 𝜆𝑘)

⋮ ⋮ ⋮
20 0.0077 0.8008
⋮ ⋮ ⋮
44 0.0025 0.9004
⋮ ⋮ ⋮
78 0.0009 0.9503
⋮ ⋮ ⋮

192 0.0001 0.9900
⋮ ⋮ ⋮

429 2.9 ⋅ 10−6 1.0000
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Appendix A. Appendix

Which Contact-Distances to Choose?

𝑟29 ,9 4 on the left shows an example for an contact-distance which well discriminates the Cis and Trans
conformation of the protein and is therefore retained. In contrast, 𝑟2,87 hardly resolves any differences at
all and is therefore discareded.

Figure A.1.: Probability distribution forCis ( orange), Trans ( blue) and nonequilibrium ( grey). Left: Exam-
ple of a distance which clearly shows a major difference between the Cis- and Trans-conformation.
Right: Example of a distance in which there is hardly no difference between Cis- and Trans-
conformation. Therefore, the distance between the residues 29 and 9 4 on the left is retained while
the distance between the residues 2 and 87 on the right is discarded.

𝑊1(𝑡) for Iterative Coring

Figure A.2.: State 1: Population probability𝑊𝑖 as a function of time 𝑡 for different coring times 𝜏 icor (iterative
method). In order to remove the strong initial decay, a coring time of 𝜏cor ≈ 200 frames = 4 ns
seems appropriate. Back-transitions are not included in this plot.
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Regions in the PCs Sampled by Single Equilibrium Trajectories

We plotted the equilibrium trajectories (Cis and Trans) individually in order to see whether trajectories
of the same conformation sample similar regions. A high overlap (in all dimensions) would indicates
converged equilibrium simulations. This one-dimensional representation suggests that trajectories
describing the same conformation seem to sample similar values which suggests that equilibrium
simulations are largely converged (as mentioned above, this is only a vague suggestion as we are limited
to one dimension).
However, we see that the fifth Cis trajectory and the first Trans trajectory cover values in 𝑥1 which are
typically covered by trajectories of the respective other conformation. This explains why some of the
Cis states are located closely to the Trans cluster in the network representations.

Figure A.3.: Normalized probability distribution of the equilibrium trajectories in PC 𝑥1 − 𝑥5 and 𝑥7 .
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Impact of Coring on the Location of theMicrostates

Coring can also shift the location of the microstates in the free energy landscape. Here we exemplary
investigated the microstate 1 and 2 and plotted their geometrical position along the PCs 𝑥1–𝑥5 and
𝑥7 . It is evident that the iterative approach respects the geometric location of the microstates more
than the classical coring. In particular for state 1, classical coring shifts the position of the microstates
considerably.

Figure A.4.: Probability density of state 1 (right) and state 2 (left) along the PCs. light blue indicates the
location of the state in the uncored trajectory, dark blue indicates the location of the state in the
iterative cored trajectory and red of the classical cored trajectory. The test was performed for a
coring time of 𝜏 c/icor = 200 frames.
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Data Generation 2: On the Selection of the PCs for
Clustering

Just like for data generation 1 (compare Sec. 3.3), the same tests were performed for data generation 2 in
order to select a suitable set of PCs which is subsequently clustered in order to identify the microstates
representing the metastable conformations of the protein. This includes the eigenvalues of the PCs and
the resulting cumulative flux (see Fig. A.5), the temporal evolution of the data along the PCs (see A.7),
the analysis of the autocorrelation functions (see Fig. A.6) and the free energy projections onto the PCs
(see Fig. A.8). The first 6 PCs contain 68 % of the variance present in the data set of data generation 2
and are chosen for clustering as they perform best on the tests performed for selecting a suitable set of
PCs.

Figure A.5.: Data generation 2: Autocorrelation function for Cis (left) and Trans (right).

Figure A.6.: Data generation 2: Autocorrelation function for Cis (left) and Trans (right).
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Figure A.7.: Data generation 2: Left: Temporal evolution along the first 8 PCs. The first three microseconds
of the nonequilibrium data were discarded. Orange denotes the symmetric time average over
104 Cis frames, blue for Trans and grey for nonequilibrium frames. Left: The free energy
projection on the corresponding PC.
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Figure A.8.: Grid representation of the free energy landscape along the PCs 𝑥1–𝑥6. For a detailed description of
this plot, see Fig. 3.6.
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transition matrix.
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Data Generation 2: Order andDisorder of theMicrostates
UnlumpedModel

Figure A.10.: Microstate trajectory of data generation 2, not lumped. The three most important pathways
predicted by theMSM and aMCMC simulation. Similar to Fig. 4.14—where one can find a
detailed description of the plot—we can observe an order-disorder-order behaviour. In pathway
1, we can see that state 47 is more ordered than its predecessor. However, this is due to the fact
that this state itself is a very pure Cis state. Only the very high requirements for initial states in
theMCMC, i.e. a relative Cis population of 100% causes the states 35 and 19 to precede state 47 .

LumpedModel
The 10most populatedmicrostates depicted here correspond to the lumpedmicrostate trajectory which
is described in Sec. 5.6. Disordererd states

Figure A.11.: By dynamical lumping coarse grained microstate trajectory: The 10most populated microstates
and their conformational heterogeneity.
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Appendix A. Appendix

Pseudocode Dynamical Lumping
Algorithm 1:Dynamical Lumping for the lumping of multiple microstates according to their
kinetic connectivity.

1 function dynlumping (trajectories, 𝜏lag, 𝑞cut);
Input :trajectories, lag time 𝜏lag and cutoff value 𝑞cut
Output :Lumped microstate-trajectory

2 Find all states in microstates trajectory
Microstates: unique elements in all trajectories→ {states} ≡ 𝛺

3 Determine transition matrix 𝑇𝑖 ,𝑗
Transition matrix: 𝑇𝑖 ,𝑗 ∀𝑖, 𝑗 ∈ 𝛺

4 Loop through various 𝑞min values
5 while 𝑞min ∈ [0, 1] ≤ 𝑞cut do
6 for �̃� ∈ {states} do
7 if 𝑞min < 𝑇�̃� ,�̃� then
8 continue
9 else
10 Sort 𝑇�̃� ,𝑗 in descending order
11 for ̃𝑗 ∈ {𝑗 |max({𝑇�̃� ,𝑗| 𝑗 ∈ 𝛺}), ...,min({𝑇�̃� ,𝑗|𝑗 ∈ 𝛺})} do
12 Rule out wrong assignment (Self transition)
13 if �̃� = ̃𝑗 then
14 continue
15 Rule out wrong assignment
16 else if 𝑞min < 𝑇 ̃𝑗 ,�̃� then
17 continue
18 Assign �̃� to ̃𝑗
19 else
20 �̃� → ̃𝑗

Figure A.12.: Top: Stationary distribution predicted by the MSM which was constructed onto the lumped
microstate trajectory. Bottom: First eigenvector indicating the slowest process in the system.
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Table A.3.: Population of state which resulted from the dynamical lumping process. States were ordered
according to their population in the trajectory after lumping. Coloring: Cis, Trans, Neq and
ambivalent.

MS𝑖 Pop [%] ∑𝑖
𝑗 Pop𝑗 %Neq %Cis %Trans in out

1 13.58 13.6 92.7 7.3 0.0 65 65
2 11.95 25.5 91.6 0.8 7.6 58 83
3 8.88 34.4 99.5 0.0 0.5 41 44
4 7.66 42.1 91.8 0.0 8.2 55 54
5 6.09 48.2 79.0 21.0 0.0 44 30
6 4.78 52.9 80.5 19.5 0.0 18 24
7 4.64 57.6 99.6 0.0 0.4 34 35
8 4.07 61.7 99.4 0.0 0.6 42 37
9 3.46 65.1 100.0 0.0 0.0 17 14
10 2.70 67.8 100.0 0.0 0.0 21 18
11 2.69 70.5 7.1 81.0 12.0 10 13
12 2.56 73.1 29.7 0.0 70.3 10 10
13 2.12 75.2 100.0 0.0 0.0 8 8
14 1.96 77.1 69.3 30.7 0.0 17 12
15 1.94 79.1 98.4 0.0 1.6 4 3
16 1.88 81.0 29.3 0.0 70.7 5 7
17 1.87 82.8 98.1 0.0 1.9 12 11
18 1.78 84.6 43.0 0.0 57.0 6 5
19 1.58 86.2 30.6 69.4 0.0 11 10
20 1.42 87.6 85.0 3.2 11.7 5 5
21 1.34 88.9 2.4 0.0 97.6 2 4
22 1.25 90.2 11.7 0.0 88.3 3 3
23 1.21 91.4 6.2 93.8 0.0 8 8
24 1.03 92.4 11.5 0.0 88.5 3 2
25 0.98 93.4 96.0 4.0 0.0 5 5
26 0.98 94.4 0.0 100.0 0.0 6 5
27 0.95 95.3 7.3 0.0 92.7 5 3
28 0.91 96.3 16.1 0.0 83.9 2 2
29 0.71 97.0 100.0 0.0 0.0 5 4
30 0.69 97.7 43.3 56.7 0.0 7 5
31 0.58 98.2 0.0 100.0 0.0 4 5
32 0.51 98.7 0.0 100.0 0.0 6 6
33 0.47 99.2 6.8 93.2 0.0 1 1
34 0.41 99.6 100.0 0.0 0.0 3 3
35 0.37 100.0 100.0 0.0 0.0 4 3
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