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Zusammenfassung

Proteine sind die Hauptakteure in einer Vielzahl von wichtigen biologischen Prozessen.
Enzyme spalten Nahrstoffe oder bauen neue Strukturen auf, wihrend Ionenkanéle die
Informationsiibertragung in den Nervenzellen ermoglichen und somit teilweise fiir un-
sere kognitiven Fahigkeiten verantwortlich sind. Die Funktionalitidt eines Proteins ist
nicht nur an die chemischen Eigenschaften der Aminosduren, aus denen es aufgebaut ist,
gebunden, sondern auch an seine Konformation und Konformationsinderungen. Da-
her ist die Untersuchung der Proteindynamik von wissenschaftlichem Interesse, um die
FEigenschaften von Proteinen zu verstehen. Aus physikalischer Sicht kann das Protein
als ein N-Teilchen-System verstanden werden, das versucht seine freie Energie mit einer
Vielzahl von Randbedingungen zu minimieren. Dies stellt ein klassisches thermody-
namisches Problem dar, bei dem wir Konzepte aus der statistischen Mechanik anwenden
konnen, um die Gleichgewichtsverteilung und andere Systemeigenschaften zu finden.

Eine Molekulardynamik-Simulation (MD) (siehe 2.1) ist eine gut etablierte Methode zur
Simulation der Dynamik eines Proteins durch numerische Losung der Newton’schen Be-
wegungsgleichungen. Dennoch ist nach erfolgreicher Simulation eine aufwendige Analyse
der Daten notwendig, um konkrete Informationen iiber das Verhalten der Proteine zu
erhalten. FEin gingiges Analyseverfahren besteht aus drei Schritten [1]. Zuerst muss
die Dimensionalitat des Problems reduziert werden, da der Fluch der Dimensionalitat es
unméglich macht, statistische Analysen in einem hochdimensionalen Raum anzuwenden.
Géngige Methoden fiir diese Aufgabe sind die Hauptkomponentenanalyse (PCA) [2].
(siche 2.4), zeitverzogerte unabhéngige Komponentenanalyse TICA [3] (siehe 2.7) oder
der aus der TICA hervorgegangene variationale Ansatz fiir Markov-Prozesse (VAMP) [4].
Als zweites wird ein Clustering-Algorithmus wie das dichtebasierte Clustering [5] (siehe
2.5) verwendet, um metastabile Konformationen, die als Zustédnde des Systems definiert
sind, zu erkennen und zu unterscheiden. Zuletzt wird ein Markovsches Zustandsmod-
ell (MSM) (siche 2.6) erstellt, um die Langzeitdynamik zwischen den Zusténden zu
beschreiben. Informationen iiber Zustandsiibergéinge im MSM sind besser vorstellbar
als die urspriingliche Trajektorie und ermoglichen daher ein besseres Verstandnis des
Proteins.

Der iibliche Arbeitsablauf bei der Analyse von MD-Daten umfasst viele Schritte und
erfordert vom Modellierer die Anpassung einer Vielzahl von Parametern. Daher vari-
ieren die Ergebnisse je nach der Expertise und den Entscheidungen des Modellierers.
VAMP-Netze [6] (siehe 2.8) sind ein Versuch, die Analyse-Pipeline zu vereinfachen und
die Abhéngigkeit von der Erfahrung des Modellierers zu reduzieren, indem maschinelles
Lernen (ML) mit dem variationalen Ansatz fiir Markov-Prozesse (VAMP) (siehe 2.7)
kombiniert wird, um Dimensionalitatsreduktion, Clustering und Modellbildung auf einen
einzigen Schritt zu reduzieren. ML hat in den letzten Jahren eine Renaissance durch-
laufen. Die Zunahme der Rechenleistung heutiger Workstations hat die Moglichkeit
eroffnet, Konzepte wie den seit den 1970er Jahren existierenden Backpropagation Algo-
rithmus [7] auf komplexen Netzwerken zu realisieren. Die Anwendungen von ML reichen
von Software fiir Teilchendetektoren [8] bis hin zur Unterhaltungsindustrie, wo wie im
Falle von Netflix die Benutzeroberfliche automatisch an die Praferenzen der Benutzer



angepasst wird [9]. Im Allgemeinen sind ML-getriebene Algorithmen niitzlich, wenn es
um die Mustererkennung in grofien Datensétzen geht. VAMPnets sind ein Ansatz, der
versucht Zustandsmuster in MD-Daten zu finden. Das neuronale Netz, das fiir diese
Aufgabe verwendet wird, wandelt die moglicherweise hochdimensionalen Eingabekoor-
dinaten direkt in ein Clustering um.

In dieser Arbeit wenden wir sowohl VAMP als auch VAMPnets auf das kleine Peptid
AIBy (siehe 3) an, um die Starken und Schwéchen der Methoden zu identifizieren. AIBg
ist aus fritheren Analysen und Studien bereits gut verstanden und daher als Testsystem
geeignet. [10] Als Referenz fiir das Clustering von VAMP-Netzen verwenden wir ein
kombinatorisches Ramachandran-Clustering (siehe 3.2.2), das Zustdnde auf Grund der
chiralen Orientierung der Residuen trennt.

Da TICA auf AIBg [11] gute Ergebnisse erzielt hat und VAMP auf TICA basiert, er-
warten wir ebenfalls gute Ergebnisse von VAMP. Wir vergleichen die Ergebnisse von
VAMP mit dene von PCA, von der wir bereits wissen, dass sie aussagekréftige Koordi-
naten fiir AIBg liefern. Da VAMPnets VAMP zur Berechnung der Kostenfunktion ver-
wenden, erwarten wir, dass wir mégliche Probleme, auf die VAMPnets stoflen kénnten,
durch die Analyse des Ramachandran-Clustering mit VAMP identifizieren kénnen. Auf
der Grundlage dieser Analyse sehen wir, dass VAMPnets voraussichtlich nicht mehr als
10 sinnvolle Zustande von AIBg finden werden. Diese Schlussfolgerung wird durch unsere
Analyse mit VAMPnets bestéatigt. Wir verwenden VAMPnets, um Zustdnde von AIBg zu
finden. Wir zeigen, dass die im VAMPnets-Papier [6] vorgestellte tiefe kegelférmige Ar-
chitektur keine gute Wahl fiir AIBg ist und versuchen, sie zu verbessern. Daher bauen
wir kegelformige Netze mit unterschiedlicher Tiefe und kurze, aber breite rechteckige
Netze.

Um die Qualitdt der mit diesen Netzwerken vorgenommenen Clustermessungen zu be-
werten, vergleichen wir sie mit dem Ramachandran-Clustering. Da eine Hauptannahme
von VAMPnets ist, dass der VAMP2-Score die Qualitéit eines Ergebnisses misst, unter-
suchen wir die Beziehung zwischen der Clustering-Qualitat und dem VAMP2-Score. Hier
sehen wir, dass der VAMP2-Score keine ausreichende Metrik fiir die Qualitét eines Clus-
tering auf AIBg. ist. Dariiber hinaus sehen wir, dass die Wahl der Netzwerkarchitektur
die Clusterings stark beeinflusst, was dem urspriinglichen Anspruch, die nutzerbedingte
Variation der Ergebnisse zu reduzieren, widerspricht. Letztlich untersuchen wir mogliche
Verbesserungen von VAMPnets und versuchen zu bewerten, ob sie ausreichen, um die
in unserer Analyse aufgetretenen Probleme von VAMPnets zu iiberwinden.

ii
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1. Introduction

1. Introduction

Proteins are the key players in a variety of important biological processes. Enzymes
split up nutrients or build up new structures, while ion channels enable information
transfer in neurons and are therefore in parts responsible for our mental capacities. The
functionality of a protein is not only tied to the chemical properties of the amino acids
it is build from, but also to its conformation and conformational changes. Therefore,
the study of protein dynamics is of scientific interest to understand the properties of
proteins. From a physical point of view, the protein can be understood as a N-particle
system trying to minimize its Gibbs free energy with a multitude of boundary conditions.
This represents a classical thermodynamic problem, where we can apply concepts from
statistical mechanics to find the equilibrium distribution and other system properties.

A molecular dynamics (MD) simulation (see 2.1) is a well established method to sim-
ulate the dynamics of a protein by numerically solving Newtons equations of motion.
Still, after successful simulation, an elaborate analysis of the data is necessary to obtain
concrete information about the proteins behaviour. A common way of analysis consists
of three steps [1]. First the dimensionality of the problem needs to be reduced because
the curse of dimensionality makes it impossible to apply statistical analysis in a high
dimensional space. Common methods for this task are principal component analysis
(PCA) [2] (see 2.4), time-lagged independent component analysis TICA [3] (see 2.7) or
the variational approach for Markov processes (VAMP) [4] that has evolved from TICA.
Second, a clustering algorithm like density based clustering [5] (see 2.5) is used to detect
and distinguish metastable conformations that are defined as states. At last, a Markov
state model (MSM) (see 2.6) is built to describe the long term dynamics between states.
Information about state transitions in the MSM is much more conceivable than the orig-
inal trajectory and therefore enables a better understanding of the protein.

The common workflow of analyzing MD data takes many steps and requires the modeler
to adjust a variety of parameters. Therefore, the results vary based on the expertise and
choices of the modeler. VAMPnets [6] (see 2.8) are an attempt to simplify the analysis
pipeline and reduce the dependence on the modelers experience by combining machine
learning (ML) with the variational approach for Markov processes (VAMP) (see 2.7) to
accomplish dimensionality reduction, clustering and model building at once. ML has
gone through a rennaisance in the recent years. The increase in computational power
of todays workstations has opened up the opportunity to realize concepts like the back-
propagation algorithm that existed since the 1970s [7]. The applications of ML range
from software for particle detection [8] to the entertainment industry, where interfaces
are adapted to user preferences like Netflix does [9]. Generally speaking, ML driven
algorithms are useful, when there is a need of pattern recognition in large data sets.
VAMPnets are an approach that tries to find state patterns in MD data. The neural
network that is used for this task, directly transforms the possibly high dimensional
input coordinates to state labels.

In this work, we apply both VAMP and VAMPnets on the small peptide AIBg (see 3) to
identify strengths and weaknesses of the methods. AlIByg is already well understood from
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previous analysis and studies and therefore suitable as a test system. [10] As a reference
for the clusterings of VAMPnets, we use a combinatoric Ramachandran clustering (see
3.2.2) that separates states based on the chiral orientation of the residues.

Since TICA yielded good results on AIBg [11] and VAMP is based on TICA, we expect
VAMP to perform well. We compare the results of VAMP to PCA for which we already
know that it delivers meaningful coordinates for AIBg. Since VAMPnets use VAMP
to calculate the cost function, we expect to identify possible problems VAMPnets may
encounter by analyzing the Ramachandran clustering with VAMP. Based on this analysis
we see that VAMPnets are not expected to find more than 10 meaningful states of AIByg.
This conclusion is validated by our analysis with VAMPnets. We use VAMPnets to find
states of AIBg. We show that the original deep cone-shaped architecture introduced in
the VAMPnets paper [6] is not a good choice for AIBg and try to improve it. Hence we
build cone-shaped networks with varying depth and short but wide rectangular shaped
networks.

To evaluate the quality of the clusterings done with those networks, we compare them
to the Ramachandran clustering. Since a main assumption of VAMPnets is that the
VAMP2 score measures the quality of a result, we inspect the relation between clustering
quality and VAMP?2 score. Here we see that the VAMP2 score is not a sufficient metric
for the quality of a clustering on AIBg.

Furthermore, we see that the choice of network architecture strongly influences the
clusterings, which contradicts the original claim to reduce the user-induced uncertainty.
In the end we look into possible improvements to VAMPnets and try to evaluate whether
they are sufficient to overcome the problems VAMPnets encountered in our analysis.
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2. Theory and Methods

The following section will introduce the key concepts and terms used in this work.
First we want to discuss common concepts used when generating and analyzing data of
molecular dynamics simulations. Afterwards we will motivate VAMP and VAMPnets
together with the theory behind neural networks.

2.1. MD Simulations

Molecular dynamics (MD) simulations are used to generate data of complex systems like
proteins. Since it is difficult if not impossible to measure protein dynamics with both high
precision and high time resolution in an experiment, MD simulations are well established
in the field. Even though we are looking at protein dynamics on an atomistic length
scale where quantum effects become relevant, MD simulations are usually classical. The
Born-Oppenheimer approximation allows to separate the dynamics of the atom cores
from the dynamics of the electrons.

we can use a classical effective field approach to produce the correct dynamics. Here
quantum effects are described by classical potentials in a so called force field. The force
field used to simulate the data set used in this work is the AMBER force field [12]. Its
potential is given as

Etotal = Z kb(l - leq)Q + Z ka(e - eeq)Q

bonds angles

+ Z Z%Vn[l—i-cos(nqﬁ—’y)]

dihedrals n

+Z Z fz‘j{Ez’j (mzj) —2(@) ] —l—qij}
o R Tij Tij dmegri;
Here the first two terms describe the bond stretching and angle bending between the
atoms as potentials of harmonic oscillators. The third term represents angle torsion and
the fourth one non bounded interactions such as van-der-Waals and electrostatic forces.
With this force field, a trajectory can be generated by using numerical integration of the
Newton equations. For this task, software packages like GROMACS [13] were developed.
Usually the protein is simulated together with a solvent in a simulation box that has
periodic boundary conditions.

2.2. Protein structure

Proteins are long chains build out of amino acids. The sequence of amino acids is
also called the primary structure of the protein. In the human body there are only 21
different kinds of amino acids. Each of them consists of a C, atom that has a NHy -
amine group and a COOH - carboxyl group as functional groups. The rest chain that is
also bonded to the C,, atom determines the identity of the amino acid. The amine group
is linked via a peptide bond to the carboxyl group of the next amino acids. The chain
of amine groups, C, atoms and carboxyl groups is called the backbone of the protein.
The resulting chain is illustrated in figure 1.
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Figure 1: Left: Structural representation of the backbone and location of the dihedral
angles. Right: Example of a Ramachandran plot. The regions that indicate a
secondary structure are marked with the name of the structure. Images taken
from [14]

As can be seen, 2 carbon and 1 nitrogen atom of the backbone belong to one amino acid.
Here one amino acid is often referred as a residue of the protein. The conformation
of the backbone has 3 degrees of freedom per residue that are given as rotations of
the angles w, ¢ and . Due to the electronic configuration in the amide group, w is
approximately constant at low temperatures and the degrees of freedom can therefore
be reduced to ¢ and . Those 2 angles are called dihedral angles. A Ramachandran
plot is a useful tool to visualize the average conformation of a protein at one residue by
plotting its free energy landscape in dihedral coordinates. Figure 1 shows a typical free
energy landscape of alanine. The locations of maxima in the free energy can be used
to describe the secondary structure of the protein. The secondary structure describes
locally formed conformations like a-helizes and (-sheets. Large proteins do also have a
tertiary structure that describes how a-helizes and §-sheets are arranged. Residues that
form B-sheets have an extremum in the upper left sector of the Ramachandran plot. The
upper right sector represents a left handed a-helix, while the lower left sector indicates
a right handed a-helix.

2.3. Dimensionality reduction

If we had simulated the atom cores in Cartesian coordinates this would leave us with a
3N dimensional trajectory where both internal dynamics of the protein and the move-
ment of the protein in the simulation box are included. NV is here the number of atoms
in the protein. As far as computational processing of the data is concerned, it highly
ineffective to work on this high dimensional space. Additionally the curse of dimension-
ality increases the amount of data needed with each dimension drastically. Therefore
our goal is to find a new set of coordinates we will call collective variables (CV) that has
a low dimensionality, but still separates different metastable states without distorting
the proximity relation between those states. This is likely to happen due to projection
errors.

A first step to reduce the number of coordinates beforehand is the choice of a suitable
coordinate system. Since we are interested in the shape of the backbone, diheadral
angles are a good choice that also reduces the dynamics on internal processes of the
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protein. To apply algorithms that find metastable states, the space is still of too high
dimensionality. Various examples of folding small proteins have shown that d ~ 5 is
sufficient to separate states without major projection errors. [15]

There exist different methods how to find good CVs. Common techniques are principal
component analysis (PCA) (see 2.4) and time-lagged independent component analysis
(TICA) (see 2.7) which are later explained in detail.

2.4. Principal component analysis (PCA)

PCA is a method to perform a dimensionality reduction. It assumes that a coordinate is
more important the higher the variance along the coordinate is. The motivation behind
this assumption is that the relevant motion of the protein should cover wider distances
than the small fluctuations insides otherwise stable conformations. If this were not the
case, it would be difficult to distinguish between different states that are close to each
other.

PCA is a unitary transformation, which means that it rotates the coordinate system
without stretching or squishing basis vectors and without changing angles of the basis
until the variance is maximized. An example of a PCA in 2 coordinates is illustrated in
figure 2.

Figure 2: Visualization of a PCA in 2 coordinates

Technically this is realized by calculating the covariancematrix C' of all coordinates Z.
For a trajectory with N data points, the entries of C are given as

1

Cij = N1 > (@i — ) () — 1) (1)

z
Diagonalizing C' with eigenvalue decomposition returns its eigenbasis.
C=UDU! (2)

U is an unitary matrix and D is diagonal. The column vectors of the change of basis
matrices U and U~! are a new set of basis vectors that is ordered by the size of their
variance represented in the corresponding eigenvalue. All covariance matrices are by
definition positive semidefinite. Therefore all eigenvalues are non negative. By select-
ing only the eigenvectors with the highest eigenvalues, the dimensionality can be reduced.

When working with cyclic coordinates, the periodic boundary constraints are problem-
atic when calculating distances in a flat projection. To be able to perform PCA on
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dihedral angles as input coordinates of the MD trajectory, dPCA+ was developed. Be-
fore calculating the covariance matrix, dAPCA+ performs a maximum gap shift. This
shifts ensures that the highest energy barriers are on the edge where the cyclic coordinate
is cut in the flat projection. That way it can be ensured that no accumulation points
are cut by the edge when working directly on angles as coordinates [16]

2.5. Density based clustering

Density based clustering is a method to find metastable states in a low dimensional set
of CVs. We do this by looking at the free energy landscape G in the CVs. Under the
assumption of ergodicity, we can can calculate G from the density of trajectory points
in the CVs.

G = —kpT In p(Z) (3)

Technically the state density p(Z) can be calculated by counting for each point how many
other trajectory points are insides a hypersphere with cluster radius r.

We now want to identify major wells of G as states. Since G is usually very rough, our
clustering algorithm must be insensitive to small unevenesses. This is done with the help
of a parameter p,,;, that describes how many trajectory points are required to be in a
well to form a new state. The clustering algorithm starts at the lowest value of G and
counts the number of points found in each well while increasing G. Each time a new well
is detected that contains at least p,,;, points, a new state is assigned to those points. If
the new well merges with an already labeled state before py,;, points are found, all new
points are assigned to the state that merged with them.

2.6. Markov state model (MSM)

Markov state models (MSM) are used to estimate the long term dynamics of a systems
to be able to obtain information without the need of more simulation time. This is done
by approximating the dynamics as memoryless jumps between its states. Each jump
evolves the system by a lag time of 7. The prefix ”Markov” implies that the model has
no memory, which means that the time evolution of a state depends only on the state
itself and not previous ones. Therefore the MSM can be represented as a transition
matrix 1" of shape n x n where n is the number of different states. Each entry ¢; ; of the
Matrix represents the probability of a state j transitioning to another state ¢ during the
time 7. Mathematicians also refer to T as a stochastic matrix. [17] To get meaningful
predictions of the dynamics, 7 should be chosen small enough that the system is most
likely to stay in its state during one time step.

Now we want to illustrate how an MSM could be build from a state labeled trajectory.
The selected 7 needs to be a multiple of the time step of the trajectory. We then count
how often a transition between state ¢ and j appears during the lag time 7 for all possible
combinations of ¢ and j. Afterwards we normalize the counts ¢; ; for each initial state
i to 1. The resulting matrix is the transition matrix 7. Due to the normalization, the
column vectors of T" are normalized. However, the row vectors are not which means that
usually transition matrices are not orthogonal.
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2.6.1. Space of transition matrices

The fundamental quantity that is needed to understand VAMPnets is the implied time
scale. Therefore we want to invest some time in understanding how it can be obtained
from a transistion matrix and why the interpretation of being a time scale is justified
for the quantity. First we have to look at the vectors, the transition matrix T operates
on. Each vector has as many entries as there are different states in the system.

One interpretation is that a vector is the probability vector of one system. Therefore,
after applying the transition matrix one or multiple times, the entries of the vector are
the probabilities of finding the system in the corresponding state. Another Interpreta-
tion is the ensemble interpretation. We imagine having a multitude of different systems
that all propagate in time independent of each other. For convenience, we normalize our
vector back to 1, so that we have information about the fraction of systems that are in
a given state. After applying the matrix, we get information about how many systems
have changed their state. Here the transition matrix is interpreted as an operator that
represents time evolution on a normalized ensemble space where systems can neither be
destroyed nor generated.

Both interpretations have in common that only positive probabilities / fractions are
allowed and physical meaningful. If we reduce our space to the sector where all compo-
nents are positive, this leads to the slight problem our space is no longer a vector space.
For each element, the inverse element is missing now. In mathematics, such a structure
is called a convex cone [18] [19].

So we have to decide if we sacrifice part of our space for a better interpretation or if
we work on the full vectorspace but are fine with a lack of interpretation for vectors
with negative entries. Usually the second option is chosen in combination with a new
interpretation for negative vectors. That’s why we will still talk about vectors in the
following sections.

2.6.2. Time information in transition matrices

Technically all information about the dynamics in states space are included in the tran-
sition matrix. The matrix contains for example information about the expected values
how long a transition from one state to another one takes. Calculating this value turns
out to be very difficult if not impossible for complex systems since the number of dif-
ferent pathways the system can take becomes infinite as soon as there are 3 states that
can be visited during the transition. Therefore it is easier to model a markov chain with
the transition matrix and calculate the times from this data.

Other information can be retrieved directly from the matrix. If a system is prepared with
a randomly given vector ¥, we expect the system to approach a stationary distribution
for long time evolutions. Mathematically this can be realized by applying the matrix
k times with k& — oco. A stationary distribution can be characterized as a distribution
where time propagation does not change anything.

TG =7 (4)

Equation (4) is an eigenvalue equation with the eigenvalue 1. The corresponding eigen-
vector represents the stationary distribution. When talking about equilibrium, we addi-
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tionally demand the distribution ¥ and Matrix M to fulfill the detailed balance criteria:
tijvj = tj.vi (5)

If a system is in detailed balance, the fluxes between two states are the same in both
directions. An example for a system that has a stationary distribution that does not
fulfill detailed balance is a 3 state system where the only fluxes in a circle and remaining
in the state are allowed.

1-2—-3—-1 (6)

The other Eigenvalues and eigenvectors are more difficult to interpret. All eigenvalues
despite the first one are smaller than 1 and their corresponding eigenvectors have at
least one negative entry. This is due to the fact that for stochastic matizes, the sum
over all components (1-norm) of an eigenvector has to be 0 if the eigenvalue is not 1.
The proof can be found in the appendix in section A.1. A negative number of systems is
not conceivable what makes it difficult for us to interpret those vectors as ensembles or
probabilities. Furthermore an eigenvalue smaller 1 might suggest at first that systems
are destroyed in during time evolution. To explain this misconception, we have to look
back at how the space we operate on was defined in the previous section 2.6.1.

If we had strictly reduced our space to the positive convex cone, we would have to ignore
all eigenvectors despite the first one because they are unphysical and not part of our
model. Then however we would need to think about how matrices work on cones and
what operations we know from vectorspaces are still allowed. What we essentially did
when doing the eigenvalue decomposition, was claiming to work on the full vectorspace
where we lack interpretation for % of the vectors.

In the molecular modeling community the interpretation that eigenvectors of higher
order represent processes rather than a distributions is deeply held [20]. A vector would
then describe a process where systems flow from one state to another state or the other
way around. The strength of the flow decreases over time because the eigenvalue is
smaller than 1. It makes sense that the flux decreases the closer the systems approach
the equilibrium distribution. Due to the eigenspace being a vectorspace, no statement
about the direction of the flow can be made. The fact that all eigenvectors despite the
first have 1-norm 0 supports the flux interpretation since no systems are lost or generated
during the process.

2.6.3. Implied time scales

As stated above, the eigenvalues of a transition matrix 7' give information about how
fast a process decays into the stationary distribution. The smaller an eigenvalue is, the
faster a process decays. The timescale of a stationary process is infinite since the process
of being in a stationary distribution never changes per definition. This is in our case
associated with the eigenvalue 1. Therefore we rescale our eigenvalues and define the
implied timescales t; of an Operator M (1) as

T

~In(Ai(7))

This definition is motivated from the exponential decay of the eigenvectors.

ti(1) = (7)
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2.6.4. Chapman Kolmogorov Test

The Chapman Kolmogorov test (CK test) can be used to determine whether a system
is Markovian or not. The CK equation (8) gives a condition that must be fulfilled in
Markovian systems.

T(nt) =T"(7) (8)

Here T'(7) and T'(nT) are transition matrices of a Markov state model with a lag time
of 7 and n7. Essentially the equation says that it should not matter if the system is
propagated once by a time step of nT or n times by a time step of 7. This is only the
case if the propagating matrix is independent of the point in time ¢ when it is applied to
a state. Simulations show that the equation is less accurate the smaller the lag time 7
is. Larger 7 reduce the information contained in the model since movements faster than
7 can’t be detected anymore. Therefore it is desirable model at the fastest time scale
for which the CK test is still fulfilled in good approximation.

Given the definition of the implied timescales in equation (7), we now show that for
Markovian systems, the implied timescale is constant as the lag time changes. We
assume CK to be fulfilled. Since T' can be diagonalized, a different formulation of CK
equation is

Ai(T)" = Ai(n7) 9)
where ); are the cigenvalues of T
ti(nr) = —m (10)
- _m(A?W (11)
- —m (12)
= ~mowey =0 (13)

This means that we can test the Markovianity by building transistion matrices at differ-
ent lag times. When plotting the implied timescale against the lag time, we can assume
Markovianity if the curve becomes horizontal.

2.7. Variational approach for Markov processes (VAMP)

The variational approach for Markov processes (VAMP) [4] has developed from time-
lagged independent component analysis (TICA) [3]. TICA tries to find meaningful
coordinates under the assumption that slow dynamics are also important dynamics. By
selecting only the slowest coordinates, a dimensionality reduction can be done. The idea
behind this approach is that a motion due to small thermal fluctuations happens on a
faster timescale than a conformational change that leads to another metastable state.
Therefore the main dynamics should be contained in the slowest coordinates. However,
studies on alanine dipeptide have shown that this is not always the case [21]. Similar to
PCA, TICA does a linear transformation when transferring to the new basis. In contrast
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to PCA, this transformation is not unitary since it involves a rescaling of basis vectors.
Similar to PCA and TICA, VAMP projects the original coordinates of the trajectory
on a new coordinate system to find meaningful coordinates. Just like TICA, VAMP is
looking for a basis that maximizes timescales. While PCA used the covariance matrix
and TICA uses a rescaled version of the covariance matrix, VAMP uses the so called
Koopman operator to find those coordinates. This generalization should make it possible
to apply VAMP to non equilibrium systems as well.

2.7.1. Koopman operator

The Koopman operator predicts the time evolution of the original trajectory coordinates
for a lag time 7. Therefore the ideal Koopman operator K (7) minimizes the average
prediction error

Et(ftJrT — K(T)ft) (].4)

where ¥y and @44, are vectors of the coordinates at time ¢ and ¢ + 7. The variational
approach shown in equation (14) leads to the name of VAMP.
It can be shown [4] that equation (14) is minimzed for

(NI
—
—_
ot
S~—

_1 _
Coo = Ee((Ty — A)(& — 0)T) = Be((Tesr — firag) (Trer — Miag)) =Cui (16)
Cor = Ee(#,.,) (17)

Coo and C; are covariance matrices of the trajectory points and the time lagged tra-
jectory points. /i and fij,e are the mean values of 73 and z;1,. Cp; is a cross-covariance
matrix, which means that it does not share all properties of a regular covariance matrix.
For example it does not have to be positive definitive. All three matrices are calculated
directly from data. The equality of Cyy and Cj; in equation (16) is only true, if the
lack of a time interval [0, 7] does not influence the expectation values of the covariances
significantly.

While VAMP is designed to be applied to the coordinates of a trajectory, it can also be
applied to the clustering of a trajectory. In that case, the resulting Koopman operator
is exactly the transition matrix of the MSM.

2.7.2. VAMP transformation

Once the Koopman operator K is calculated from the data, VAMP uses singular value
decomposition to diagonalize K. For reversible equilibrium dynamics, singular value de-
composition is equivalent to the eigenvalue decomposition. Singular value decomposition
is a generalized concept to bring an arbitrary matrix K of shape n x m to a diagonal-like
shape where k; ; = 0 for 7 # j.

For each matrix K there exists a representation

K=UDV™! (18)

where U and V are unitary matrices. D is a diagonal-like matrix with entries o;. The o;
are called singular values of K and are distinct. If there are no degenerated o;, U and V/

10
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are unique. When building matrices like the Koopman operator from simulation data,
the singular values can be expected to be non degenerate. U and V are the transforma-
tion matrices between the original basis and the one where the matrix has diagonal-like
shape. The column vectors of U are called left singular vectors while the column vectors
of V are called right singular vectors.

The interpretation of singular values differs in parts from the interpretation of eigenval-
ues. The largest singular value o is the largest amount a vector can be stretched by
the matrix K. The corresponding singular vector ¥ spans the related vector space. In
contrast to an eigenvector, the transformed vector K is allowed to be rotated and does
not have to be part of the vector space spanned by #; anymore.

For transition matrices, all o; have to be positive since otherwise the probability (or num-
ber of systems in state s) would not be conserved. Since we want to look at equilibrium
dynamics, we also know that we can force detailed balance. With all those specifications,
the singular value decomposition becomes equivalent to the eigenvalue decomposition.
Therefore we find an orthogonal U that diagonalizes K.

K =UKU" (19)
\V/’L'>j2)\i>)\j (21)

K is diagonal. U is the transformation matrix used by VAMP. The projection of &} in
the eigenbasis of K can be calculated as

7 =UTz (22)
%t-f—T = UTCEH-T (23)

Visually spoken, this eigenbasis is the set of orthogonal vectors that has the highest
implied time scales. Under the assumption that a process is relevant if it is slow that
the main information is contained in the first vectors of the eigenbasis.

2.7.3. CK test for VAMP

To test Markovianity, we want to check if equation (8) is fulfilled for the Koopman
operator K. With K being an k x k matrix, we would have to compare k? values to
judge if both sides of the CK equation are similar without knowing which of the matrix
elements are important. Therefore it is useful to construct a score that evaluates how
similar the effects of K (n7) and K™ (7) are on the trajectory. This is done by looking how
good the predicted dynamics correlate with the real time evolution in VAMP coordinates.
To do so, VAMP calculates two sets of time-lagged cross covariance matrices

Covest(n) = (K(n7)Tt, Teinr) po (24)
Covpl"ed(n) = <Kn(7—)ftyft+n7'>po (25)

where pg are all the points in the trajectory that have a lagged point.
Covpred(2) for example is the cross covariance matrix of the two times propagated tra-

jectory points and the real value of the trajectory points after 2 lag times. Since this
is done in VAMP coordinates the elements on the main diagonal are the covariances of

11
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prediction and real values for one VAMP component.

To test how similar the prediction of K"(7) and the estimation of K(nt) are, VAMP
suggests to compare their covariances in the main components. This means that Marko-
vianity is given, when

Covest(n)i,i = Covpred(n)i (26)

Since the covariance matrices are in VAMP basis, it is important that equation (26) is
fulfilled for small i as those covariances are related to the slowest processes. For large ¢, we
expect both matrix elements to decay to 0 for larger n, because fast processes are harder
to predict on longer timescales. Since we obtain information about the Markovianity by
comparing the covariances of estimates and predictions, no information can be obtained
when both of them are approximately 0.

2.8. VAMPnets

Based on recent progress in the field of machine learning driven data analysis, VAMPnets
[6] try to apply established software packages for building and training neural networks
on MD Trajectories. Keras [22] is used to build the network while Tensorflow [23] is the
most common backend that performs the training algorithms. The goal of VAMPnets
is to train a network that can assign a state label to any given trajectory point without
previous dimensionality reduction and clustering of the data.

2.8.1. Neural networks

Neural networks are inspired by the networks biological neurons form inside the brain.
Artificial networks consist of 3 different types of neurons. Input neurons represent sen-
sory neurons that deliver a signal to the network. Hidden neurons represent neurons
of the central nervous system and are responsible for information processing. Output
neurons represent motor neurons which show the reaction of the network to the signal.
There are a variety of different network types that vary in the way their hidden neurons
are connected. In this work, we want to focus on dense layered feed forward neural
networks [24] as shown in figure 3. Here each neuron is connected with all neurons of
adjacent layers. Feed forward means that each neuron can only excite neurons in its
following layer but never in a previous one.

12
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hidden layers

input layer output layer

Figure 3: Schematic diagram of a feed forward neural network. Each circle is a neuron
and each grey arrow is a connection between neurons. The arrow indicates the
direction in which the neurons are connected. Graphic taken from [25]

Technically a layer of neurons is represented by vectors. The entries of the vector rep-
resent the excitation of the corresponding neuron. Let #; be a set of vectors where i
enumerates the layers with ¢y being the input layer and ¢y being the output layer. The
strengths of the connections between all layers ¢ and ¢ + 1 are contained in a set of
matrices called M;. The excitations of neurons in each layer ¢ + 1 can then be calcu-
lated from the excitatons of the previous layer i. Additionally to the standard matrix
multiplication, neural networks apply a nonlinear activation function o like the sigmoid
function defined in equation (28) to the excitation that reaches the neuron in the next
layer. The excitation of #;41 can therefore be calculated as

i1 = oy (M; ;) (27)
. 1

where o; takes into account that different activation functions can be chosen for different
layers.

Such a network responds to a combination of excitations in the input layer with a
combination of excitations in the output layer. How the response looks like depends on
the matrix elements of M;. Finding suitable M; is the main task in ML that is achieved
by training the network (see 2.8.3).

Assuming the network has n dimensional input coordinates (e.g. 10 dihedral angles) and
m dimensional output coordinates (e.g. 20 states), the network can be interpreted as a
function x with

x: R" — R™ (29)
The universal approximation theorem [26] states that feed forward neural networks with
at least one hidden layer can approximate any continuous function with the right choices

of parameters and hyper parameters in the network. Hereby, only minor restrictions are
imposed on the activation functions.

13
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2.8.2. Structure of VAMPnets

VAMPnets consist of 2 architectural identical network lobes. An illustration can be seen
in figure 4. The input of both lobes are the coordinates from the MD. The output of each
lobe is interpreted as a state clustering. This means that the dimension of the output
layer is also the maximum number of states VAMPnets can find in the data. Network
lobe 1 is used to transform the trajectory from coordinate space to state space while
network lobe 2 transforms the time lagged trajectory.

Network lobe | Network lobe Il
Input X, X, -
Input layer (Q e 06 o Q) ( >

Output layers @ '
Output Xo(X) \ / X1 (Xiyo)

VAMP score

Hidden layers

Figure 4: Architecture of a VAMPnet. Taken from [6]

As mentioned above, the outputs of the network lobes should represent state clusterings.
We want each of the m output nodes to display the probability to be in the state the
output node represents. This can automatically be achieved by an elegant choice in
the activation function of the output layer. The softmax function, which is defined as
follows:

2
B Z;nzl e

normalizes the sum over all components of the output vector to 1 and rescales all values
to the interval [0, 1]. Taking softmax as the activation function of the output layer makes
X map into

fori=1,...,m and 2= (21,...,2m) € R™ (30)

{zeR™|0<x; <1, |z| <1} (31)

which reduces the amount of functions that can be approximated to all functions that
look like a state clustering. For all other activation functions, the sigmoid function is
chosen. We will call state clusterings that assign sets of probabilities for belonging to
each possible state a fuzzy clustering. In contrast, we will call clusterings that assign one
state label for each trajectory point a hard clustering. A hard clustering can be obtained
in different ways. The intuitive way is to select the state with the highest probability in
the fuzzy clustering. It is important to mention that probabilities returned from a fuzzy
clustering are artificially crafted quantities that are designed to have the properties of
probabilities. It is not necessarily given that they represent real quantities of the system.

14



2. Theory and Methods

2.8.3. Training VAMPnets

To train a neural network, the network needs both data to train with and a cost function
that evaluates how good its response to a given input was. The cost function of choice
must return a scalar value that is called the loss. The network then tries to minimize
its loss. Here the backpropagation algorithm is a useful tools to calculate a gradient of
the cost function [27]

Common networks are trained by the supervised learning method. Here, the modeler
must provide training data as input and the desired output of the network in combination
with a loss function L. This function could for example calculate the deviation between
prediction x(x) and the desired result r(z). E.g. if we wanted to learn the function
x(x) = 2z, we would give the inputs {0, 1,2, 3,4} with the labels R = {0,2,4,6,8}. Our
loss function could be

L= () - r(x))? (32)

where r takes the label of x from R. Here we can see that we have to be very careful
to avoid overfitting. With networks being universal function approximators, we have to
build a network that is on the one hand complex enough to identify the relation we are
looking for and on the other hand not too complex to be sensitive to statistical fluctua-
tions. If there was additional noise in the data of the example above, a complex network
could always fit a polynomial of 5th order to reduce its loss to 0. The complexity of
a network is defined by its architecture. Therefore we must be careful when selecting
hyperparameters like the number of nodes in each layer.

In contrast to supervized learning, VAMPnets use a self supervised learning method.
Here the network does not need the correct answers to the inputs of the training data.
Instead it calculates the loss directly from its own result by looking at the size of the
implied timescales are after the transformation. This is done by applying VAMP on a
batch of transformed data points x(Z). Afterwards the VAMP2 score S of the Koopman
operator K is calculated. The VAMP2 score is definded as

S=> o} (33)

where o; are the singular values of K. The negative VAMP2 score is taken as loss.
Additionally VAMPnets have the option to directly calculate the gradients on the loss
for both network lobes. In the latest version (0.1.4), VAMPnets support tensorflows au-
tomatic gradient calculation. Therefore VAMPnets gradient calculation was not needed
in this thesis. A common way to solve the minimization problem of the cost function is
stochastic gradient descent since analytic methods are impracticable in high dimensional
spaces [28]. Due to this numerical approach to learn y, the training data usually needs
to be shown multiple times to the network to ensure convergence. Adam [29] is a im-
proved version of stochastic gradient descent that is used as an optimization algorithm
for VAMPnets. After the network was trained, it can be applied on the whole trajectory
to perform a fuzzy clustering.
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2.8.4. Assumptions

Finally we want to talk about the assumptions that are made when claiming that VAMP-
nets find an optimal state clustering when maximizing the VAMP2 score.

First, we claim that we can identify the importance of a process by its timescale. Sim-
ilar to TICA [3] and VAMP [4] (which VAMPnets use), we assume that the slower a
transition proceeds, the more important it is. Second, we claim that an ideal state clus-
tering maximizes time scales of all processes. VAMPnets assume that the ideal state
mapping is found, when the implied time scales of the Koopman operator in the fuzzy
state variables become maximal. This can be a reasonable assumption since the highest
barriers in the free energy landscape of all conformations should be in between states.
The higher a barrier is, the longer it takes the system to pass it. This means that the
clustering with the highest implied timescales should separate the coordinate space at
the highest barriers in the free energy landscape, which matches with our intuition of a
good clustering.
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3. Model system AIBy

3. Model system AIB

Figure 5: Structural representation of the the 2 main states of AIBg. The image on the
left shows the left handed and the image on the right the right handed « helix.

3.1. Characteristics of AlB,

AIBy is a peptide that consists of 9 alanine amino acids. Due to its simplicity, AIBg is
well understood and it is therefore suitable as first test system for a new method like
VAMPnets. In contrast to most larger proteins, AIBg is an achiral system. In most
cases each residue has a clear left (L) or right handed (R) orientation as can be seen in
the Ramachandranplot (figure 8. In the two main conformations of AIBg, the protein
either forms a fully left handed or fully right handed « helix. Those can be seen in
figure 5. What makes AIBg a non trivial test system is that the transitions between
the two main states shown in figure 5 include different timescales. On short timescales,
hydrogen bonds are breaking which can result for medium timescales in the swap of the
chiral orientation of one residue. For long timescales, this can lead to a change of chiral
orientation of the full peptide. In main pathways between a fully left and fully right
handed orientation, the chiral orientation changes at one end of the protein and step
by step swaps over all orientation of the proximate residues until the other end of the
protein is reached.

3.2. AIBy Meld data set

The data used in this work was generated with the "Modeling Employing Limited Data”
(MELD) method. MELD is an enhanced sampling scheme that can accelerate MD
simulation with the use of information the modeler already has about the system. It is a
Bayesian approach that tries to build a physical correct model from limited data obtained
e.g. in an experiment. MELD increases the sampling rate of rare events which results in
shorter simulation times while the resulting free energy landscape remains qualitatively
similar [10] Detailed balance is preserved. The simulation produces a multitude of short
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3. Model system AIBy

trajectories. In our the data contains 5.5 million trajectory points which is represents a
total simulation time of 221 us with a time step of 40 ps between two frames. The length
distribution of trajectories is shown in figure 6. We see that most trajectories have 350 -
450 points. Even though AIBg has 9 residues, we ignore the outer 2 on both sides what
reduces the number of relevant residues to 5 and the number of corresponding dihedral
angels to 10. This is done because the dynamics of the outer residues underlie strong
fluctuations.

Number of trajectories

—

300 325 350 375 400 425 450 475 500
Trajectorie length

Figure 6: Distribution of trajectory lengths in the MELD data of AIBg. There are 13805
trajectories in total. The shortest has 35 frames (1.4 ns) while the longest has
500 (20 ns) frames. Only few trajectories have less than 300 frames and are
omitted in the histogram.

3.2.1. Density based clustering

To evaluate how good the projection of VAMP and the clustering done with VAMPnets
are, we need to know how to identify a good result. Therefore we want to use established
methods as benchmarks for VAMP and VAMPnets.

Previous study have shown that PCA yields good results for AIBg. [10]. Figure 7 shows
the free energy landscape of AIBg projected to the main two components found with
PCA. Additionally, a density based clustering was done to find the main states and
their populations. In the plot, the location of the 10 main states is labeled with their
molecular representation. The clustering was done on the first 5 PCs with a clustering
radius of 0.34 and multiple different values of p,,;,. For the clustering shown in figure 7,
Pmin = 200 was chosen.
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Figure 7: Free energy landcape of AIBg in the first two principal components. The
location of the 10 most populated states found with density based clustering is
labeled with their molecular representation (LLLLL,...). The representations
are based on the average location of states in the Ramachandran plots of the
inner 5 residues.

3.2.2. Ramachandran clustering

Another method to find different metastable states uses the Ramachandran plots of
the 5 residues. We will call this approach Ramachandran clustering. Here we use the
knowledge that in most cases, the residues of AIBg have a clear right or left handed
orientation as can be seen in figure 8.

Points in the top right a;-region have a left handed orientation (L) while points in the
bottom left a,-region have a right handed orientation (R). As can be seen, the top left
B-region is very low populated. This means that for each residue, we can assign the
attribute left (L) or right (R). This is done by looking whether the ) value of the point
is above or below the line

Y=-02-¢ (34)

This separation is designed in a way that it cuts through the highest potential barriers
in the free energy landscape of the Ramachandran plot. As stated above, for each of the
5 residues either L or R is assigned. Following the laws of combinatorics, this results in
25 = 32 different possible states.
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Figure 8: Ramachandran plot of the first residue of AIBg. The blue line shows the

separation made by the Ramachandran clustering

Table 1 shows the results of a Ramachandran clustering provided by Matthias Post. The
table also shows the population of the states.

Both density based clustering and Ramachandran clustering show that the two most
populated states of AIBg contain over 60% of all trajectory points. Due to the inter-
pretation coming from the Ramachandran plots, they can be identified as states where
the peptide forms a helical structure. It is either fully left- or fully right-handed. We
will refer to the Ramachandran states 1 (LLLLL) and 2 (RRRRR) from table 1 as the
main states. The next 8 most populated states represent conformations where only one
end of the helix is twisted in the other orientation (e.g. LLLRR). We will refer to those
states as major states. In the projection on the first 2 PCs (see fig 7) they can be found
as outer ring in the free energy landscape. The least populated states are those where
the orientation in the middle of the protein differs from the orientation at the ends (e.g.
LRLLR). We will refer to those states as minor states. They can be found in the center
of the projection to the first 2 PCs.
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‘ state ‘ interpretation ‘ population ‘ % ‘
1 LLLLL 1716645 | 31.03
2 RRRRR 1701847 | 30.76
3 LLLRR 249536 4.51
4 LLRRR 246444 | 4.45
) RRRLL 240263 4.34
6 RRLLL 235933 | 4.26
7 LLLLR 222508 4.02
8 RRRRL 219050 | 3.96
9 LRRRR 188590 | 3.41
10 RLLLL 182983 | 3.31
11 LLRLL 32730 | 0.59
12 RRLRR 30835 | 0.56
13 RRRLR 29139 | 0.53
14 LLLRL 27599 | 0.50
15 RLLLR 26837 | 0.49
16 LRRRL 26169 | 047
17 LRLLL 24979 | 0.45
18 RLRRR 24808 | 0.45
19 LLRRL 22956 0.41
20 RRLLR 22206 | 0.40
21 LRRLL 18156 | 0.33
22 RLLRR 17711 0.32
23 RRLRL 4182 | 0.08
24 LLRLR 4125 | 0.07
25 LRLRR 3072 | 0.06
26 RLRLL 2996 | 0.05
27 LRRLR 2635 | 0.05
28 LRLLR 2529 | 0.05
29 RLRRL 2333 | 0.04
30 RLLRL 2237 | 0.04
31 RLRLR 356 | 0.01
32 LRLRL 344 | 0.01

Table 1: Populations of states found with the Ramachandran clustering. The interpre-
tation represents the chiral orientation of the inner 5 residues.
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4. VAMP analysis of AlIB,

Before inspecting how VAMPnets cluster AIBg, we want to investigate if VAMP finds a
reasonable projection of the data. Furthermore we are interested in finding a suitable lag
time 7 that can be used by VAMPnets as well, assuming both approaches behave similar.

4.1. VAMP on dihedral angles

VAMP was applied on the MELD data with different lag times. The input coordinates
for VAMP were the usual 10 dihedral angles. To visualize the transformation that VAMP
found, we plot the data along the PCs on the x axis and along the VAMP coordinates on
the y axis for the 5 main coordinates. In that way, correlations between the PCs and the
VAMP coordinates should become visible. For an exemplary lag time of 7 = 1.2 ns, this
is shown in figure 9. To see if points belonging to the same state are projected in the same
areas, the states are colored differently. The state labels are based on the density based
clustering discussed in section 3.2.1. Figures 29 and 30 in the appendix show the same
plots for very short (7 = 0.04 ns = 1 frame) and long lag times (7 = 6.4 ns = 160 frames).

The diagonal elements of figure 9 show that there is a strong correlation between the
main components of VAMP and PCA. This shows that vectors in the direction of the
highest variance are also the vectors that represent the slowest processes. So, VAMP
performs well for AIBg.

The correlation becomes stronger for lower lag times as can be seen in figure 29 in the
appendix. Here the 4th and 5th component of VAMP is multiplied by -1. Since we
operate in a vectorspace, the orientation of the basis does not matter. Figure 30 in the
appendix shows that the correlation decreases with higher lag times. Here the correlation
of the first 2 components is still significant. Higher components do not correlate strongly
anymore with their correlation decreasing as the index of the components increases. The
cross correlation between different components is also reduced. This aligns well with the
idea that dynamics on timescales closer to the lag time are more difficult to resolve than
dynamics that are magnitudes slower than the lag time. Furthermore, the fact that the
MELD data is a combination of many short trajectories leads to problems with high
lag times. To calculate the Koopman operator, we need to calculate Cp; = Et(actxaf)
which includes pairs of data points and lagged data points.

The number of pairs N used to calculate Cyy is

Ne=L-r1 (35)

where L is the length of the trajectory and 7 is the lag time in frames. If 7 reaches
the order of L, we construct Cp; with very limited information since we can not make
a prediction about the time evolution of most data points anymore. For example, for a
lag time of 7 = 7 ns (175 frames), the calculation of Cp; would only use half the data
it would for the smallest lag time of 7 = 0.04 ns (1 frame) as can be seen in figure 6.
Additionally, since the trajectories have different lengths, we ignore all points from tra-
jectories shorter than the lag time. Summing up, it can be said that we want to choose
the lag time as short as possible.
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Correlation between PCA and VAMP coordinates for T = 1.2ns
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Figure 9: Projections by VAMP (y-axis) and PCA (x-axis) of the AIBg MELD data
points. Every 10th point is plotted. For VAMP a lag time of 7 = 1.2 ns
(30 frames) was chosen. The color encodes the state label found with density
based clustering.
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4.2. Chapman Kolmogorov test

Even though short lag times result in a better data basis, we still want to ensure that
the underlying dynamics VAMP observes are Markovian. Therefore we make a CK test
as described in section 2.7.3. Figure 10 shows how the covariances of estimates (K (n1))
and predictions (K" (7)) change with increasing n. Only the covariances of the 4 main
VAMP components are plotted as columns. Each row shows the CK test for a different
lag time.

As can be seen, the CK test of the first component yields high deviations between
estimates and predictions for short lag times. The higher the lag time becomes, the
closer are the the covariances of estimates and predictions. This gives us a lower border
on the possible lag times. Based on the plot we decide that the CK criteria is sufficiently
fulfilled at a lag time of 7 = 1.2 ns.

Figure 10 also shows that the covariances of higher components decay faster to 0. This
is logical since those components represent faster processes. The plot shows that the
4th component already decreases to 0 for small n. Therefore we base our choice for a
Markovian lag time only on the first 3 components. Nevertheless we have seen in figure 9
that the fourth and fiftth VAMP components are very reasonable as well for 7 = 1.2 ns.
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Chapman-Kolmogorov test for aib9
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Figure 10: CK test of VAMP models build on the AIBg MELD data with different lag
times. Each column show the covariances of a VAMP coordinate at different
lag times. Each row shows the covariances of the 4 main VAMP coordinates
at the same lag time.
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4. VAMP analysis of AIBgy

4.3. VAMP analysis of the Ramachandran clustering

Now we want to apply VAMP on the Ramachandran clustering to check if the assump-
tion (see 2.8.4 of VAMPnets that timescales are increased when going from space-like
coordinates to state-like coordinates is fulfilled for AIBg. This can be done by comparing
the singular values of the Koopman operators and the VAMP2 scores from VAMP on
dihedral angles with VAMP on the Ramachandran clustering. The Ramachandran clus-
tering is a hard clustering. VAMP can only be applied to multidimensional trajectories.
Therefore we vectorize the Ramachandran clustering by labeling each trajectory point
with a 32 dimensional array where all entries are 0 despite the entry of the actual state
which is set to 1. So the entries of the array can be interpreted as probabilities just as
the output of VAMPnets. On this new fuzzy-like clustering we apply VAMP with the
same lag time as used for the dihedral angles.

Figure 11 shows the singular values of both the Ramachandran clustering and the dihe-
drals. Even though the largest singular value is expected to be 1 for the Ramachandran
clustering, it can not be found in figure 11. This is because VAMP and VAMPnets
remove it and add it in hindsight again to ensure that the largest singular value is really
set to 1 after decorrelating the basis [4].
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Figure 11: Singular values of Koopman operators on the dihedral angles and the fuzzy
like Ramachandran clustering

It can be seen that the first 2 singular values are very similar for both choices of coor-
dinates. Those two could represent main transitions of states in the outer ring of the
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4. VAMP analysis of AIBgy

projection to the 2 main VAMP coordinates (see figure 7). For all other singular values,
those of the Ramachandran clustering are significantly larger than the ones of the dihe-
dral angles. This means that the timescales of non main processes are increased when
transitioning from space- to state-like coordinates for AIBg. It is also worth noting that
the smallest 5 singular values of the dihedrals are close to 0. This indicates that all rel-
evant processes can be kept when reducing the dimensionality to a 5 dimensional space.
So, VAMP can give a hint how many collective variables should be kept for clustering
algorithms.

In comparison, the decay of the singular values on the Ramachandran clustering is
much smoother and there are &~ 80 of them close to 0. We also see that there are
only 31 singular values plotted in figure 11 even though the Koopman operator of the
Ramachandran clustering is a 32 dimensional matrix. This could be due to a numerical
issue when calculating the singular values which made VAMP ignore one value.

Figure 12 shows the VAMP2 scores in relation to the number of singular values used
to calculate the score. Since VAMP2 is the sum over the squared singular values, the
impact of small singular values is negligible. We see that the VAMP2 score of the
Ramachandran clustering is more than 0.6 larger than the VAMP2 score of the original
trajectory in dihedral angles. This validates the idea that the timescales are increased in
state-like coordinates. Assuming that the Ramachandran clustering is close to the best
clustering we can get for AIBg, this leads to the expectation that a VAMP2 score of 2
(or 3 if we take the 1 into account that VAMP adds in hindsight) is an upper border for
all possible clusterings of AIBg. For VAMPnets, this means that no matter what feature
transformation x the network learns, the VAMP2 score should not exceed 2. VAMPnets
ignore the additional 1 for the calculation of the VAMP2 score in the training.

Figure 12 also shows that the VAMP2 score only increases marginally when using more
than 9 singular values. This means that for AIBg it is possible to find a clustering to 10
states (1 more than important singular values) that leads to the same VAMP2 score as
the Ramachandran clustering to 32 states.

Looking back at the state distribution of AIBg in the Ramachandran clustering, the 10
most populated states are exactly the main and major states. Still, it is not given that a
clustering to 10 states with a VAMP2 score of 2 finds the 10 most populated Ramachan-
dran states. Figure 12 only showed that there are 9 important processes in the clustering
to 32 states. It did not show that those processes are in the 10 most populated states.

VAMPnets only possibility to evaluate the quality of a clustering is the VAMP2 score.

This is problematic since we saw that a So, it is expected that VAMPnets have problems
in finding more than 10 states while struggling to distinguish minor states.
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Figure 12: VAMP2 score of fuzzy-like Ramachandran clustering and dihedrals based on
how many singular values are used.

28



5. Applying VAMPnets to AIBgy

5. Applying VAMPnets to AIBy

Even though the claim of VAMPnets is that the clustering results rely less ” on substantial
technical expertise of the modeler” [6], VAMPnets still require the modeler to select
various parameters. In the following, the meaning of the different parameters is explained
together with their choice in this work. At the time of this work, there exists no user
friendly ”plug and play” implementation of VAMPnets. The user has to build VAMPnets
manually with Keras [22]. This is why many parameters like the optimization method
must be specified explicitly by the user.

5.1. Parameters of VAMPnets

Lag time 7: The user has to select a lag time that is used by VAMP when calculating
the Koopman operator. 7 is therefore the time lag between the points in both network
lobes. As was shown in figure 10, 7 = 1.2 ns is a good choice for VAMP on AIBg. We
assume in the following that this lag time works on VAMPnets as well.

Maximum number of states m: The user has to choose the size m of the output layer.
This means the user has to specify what the maximum number of states found in the
data should be. On one hand we already saw based on the Ramachandran clustering
(see 3.2.2) that we expect a maximum of 32 states in AIBg. On the other hand, we saw
based on the analysis with VAMP (see 4.3) that VAMPnets are expected to resolve only
up to 10 states. For the first analysis we will set m = 20 since we think that this is
sufficient. Later we will do clusterings with m = 32 as well.

Cutoff e When calculating the VAMP2 score, € is a cutoff that can be used to reduce
computational time. All singular values smaller than ¢ will be ignored. This can come
in handy, when m becomes large and computational time increases with no additional
information obtained from small singular values. In the case of AIBg this is irrelevant
because we never want more than 32 states and always want to use all singular values.
€ was set to 1075, Therefore no significant error was made due to e.

Batch size: Due to a limited memory capacity and runtime optimisation, computers
can not process the whole trajectory at once to calculate gradients of y. Therefore, the
data is split up to batches and a stochastic gradient descent (SGD) is performed. The
network calculates a gradient for one batch and slightly modifies its parameters. After-
wards it does the same thing with the next batch until all batches are done. Undersized
batches can result in numerical errors while training VAMPnets. Oversized batches make
the algorithm more stable at the cost of longer computation time. Additionally a high
batch size results in less gradient steps, which means that the network does improve its
parameters less often when iterating over the training data.

In this thesis, a batch size of 3000 was used for all networks since this appeared to be a
good compromise.

Number of epochs: The number of epochs represents the number of iterations over
the whole training data set that is used to train the network. In this work, the networks
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5. Applying VAMPnets to AIBgy

were trained for 30 epochs, which have proven to be sufficient since the networks showed
converging results.

Optimization method: The user has to select the optimization method that should
be used for the SGD. In this work we used ADAM [29] since it was recommended for
VAMPnets [30].

Network architecture: How many hidden layers should the network have? How many
nodes should be in each layer? The answer to those two questions is totally up to the
user. Nonetheless it is a very important question to answer since it massively changes
the complexity of the network. The VAMPnets paper [6] proposes to use cone-shaped
networks, where the number of nodes monotonically increases/ decreases by one for each
hidden layer until the number of nodes in the output layer is reached. In the following we
will also inspect the influence of the network architecture on the results of VAMPnets.

Data preparation: To detect overfitting, we want to split our data into a training and
a validation data set. To ensure that both data sets contain trajectory points from
all trajectories, all possible pairs of points and lagged points were generated for each
trajectory. Afterwards, 90% of pairs of each trajectory were assigned as training data
and 10% as validation data. This validation data pairs were taken in equal distances
from the original trajectory so that the validation points were not concentrated at one
location of the trajectory. All networks in this work were trained with the exactly
same data splitting. This is important because differences in the clusterings can not be
explained by different training data sets.

5.2. Visualisation

VAMPnets do not provide their own coordinates to visualize the clustering. Given that
the assumptions of VAMPnets are valid, the VAMP2 score can be used to measure how
successful a clustering was. Still, we want to see visually how well VAMPnets clusterings
match with our understanding of a reasonable state clustering for AIBg.

Since we already did a Ramachandran clustering in section 3.2.2 and showed with the
Ramachandran plots that it is well justified and precise for AIBg, we can assume to
know what the ideal clustering should look like. Therefore we can visualize VAMPnets
clustering by plotting the differences in state assignments between VAMPnets and the
Ramachandran clustering. We will call this a state mapping plot. An example is shown
below in figure 13a. Figure 13 shows the best hard clustering result out of 10 indepen-
dent trainings achieved by a cone-shaped network with 4 hidden layers. The maximum
number of states was set to 20, but only 16 were populated. On the upper half of the
circle in figure 13a the states found with VAMPnets are listed. On the lower half are the
states found with the Ramachandran clustering are shown. Those are indexed clockwise
with decreasing population. The translation from index to molecular representation is
shown in table 2. The connections between Ramachandran and VAMP states represent
the fraction of points that map to an other state. The small number below the state
labels in figure 13a indicate how many trajectory points belong to the state. This is also
represented by the radian measure of the state.
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In case we want to analyze a new system for which no reference clustering is known
yet, we can plot the trajectory points in the first 2 components of VAMP obtained from
the original trajectory. An example can be seen in figure 13b. The clustering itself is
visualised by color.

The advantage of the representation in figure 13a is that it clearly shows if VAMP
merges or splits up states from the Ramachandran clustering. Since the Ramachandran
states have a meaningful molecular interpretation, we can directly see from table 1
which molecular conformations VAMP struggles to distinguish. For example we see in
figure 13a that the Ramachandran state 5 (RRRLL) is split up to both VAMPnets state
10 and 5.

The advantage of the representation in figure 13b is that we can distinguish trajectory
points that are clustered to the same state. We get information about where the states
are in VAMP coordinates which allows us to see which states are close. For example we
see that minor states close to the two main states in red (LLLLL) and blue (RRRRR)
are clustered to the main state as well. Additionally we would be able to see if states
were not localized in case the clustering had gone wrong and the points of a state were
spread across the coordinate space.

For the sake of clarity and because the essential information can mostly be obtained from
the state mapping plot (see figure 13a, we will only show this one for further clusterings.
The other representation can be found in the appendix. Table 2 shows the translation
of the 10 most populated states in the Ramachandran clustering.

state index ‘ interpretation ‘ population ‘ %
1 LLLLL 1716645 | 31.03
2 RRRRR 1701847 | 30.76
3 LLLRR 249536 | 4.51
4 LLRRR 246444 | 4.45
) RRRLL 240263 | 4.34
6 RRLLL 235933 | 4.26
7 LLLLR 222508 | 4.02
8 RRRRL 219050 | 3.96
9 LRRRR 188590 | 3.41
10 RLLLL 182983 | 3.31

Table 2: Translation from state index to structural interpretation for the 10 most pop-
ulated states of the Ramachandran clustering.
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Figure 13: Best example of a Clustering done with cone-shaped VAMPnets with 4 hidden
layers. The lag time was set to 7 = 1.2 ns and the maximum number of output
states to 20. 39
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5.3. Cone-shaped networks with varying depth

As stated in section 5.1, the original VAMPnets paper [6] proposed cone-shaped net-
works, where the number of nodes monotonically increases/ decreases by one for each
hidden layer until the number of nodes in the output layer is reached. The freedom of
architecture can therefore be reduced to the number of states the network should cluster
to. However this is just one possible network architecture and it is not given that this
is an intuitive or optimal network choice as the following example illustrates:

e In case we had 10 input coordinates and had tried to cluster on 7 states, we would
have 17 hidden nodes distributed in 2 layers.

e In case we had 10 input coordinates and had tried to cluster on 2 states, we would
have 42 hidden nodes distributed in 7 layers.

The second network is far more complex, even though it seems to performs a simpler
clustering which should require a less complex network. Because of this consideration we
construct our networks differently. While maintaining the cone shape, we allow to choose
the number of hidden layers as well. The difference in the number of nodes between two
consecutive layers is approximately constant. In our case, this means that for a network
with 10 input nodes, 20 output nodes and 1 hidden layer, this layer has 15 nodes. If we
were to choose 2 hidden layers, those layers would have 13 and 17 nodes and so on.

To check the influence of the number of hidden layers on the clustering results, a set of
networks with 0 to 10 hidden layers was trained. Examples of the clusterings are shown
in the figures 14 to 17. Since the input coordinates are 10 dimensional and we cluster to
a maximum of 20 states, the network with 10 hidden layers has the architecture proposed
by the VAMPnets paper.

In comparison to original VAMPnets where the network shape narrowes, the shape of
our networks widens up. This is because we previously reduced the dimensionality of
our data by working with dihedral angles. With the idea of reducing the number of
steps in the workflow when analyzing MD data, VAMPnets are designed to work on
high dimensional input coordinates. Still we have seen that 10 dimensions are enough
to clearly encode 32 different states. Therefore it should be even easier for VAMPnets
to find those states, since the input data contains less irrelevant information.

Since the networks try to cluster by optimizing the VAMP2 score, we will also compare
the scores of the networks when evaluating the quality of the clusterings.
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Figure 14: State mapping plot of a network without hidden layer. 6th best VAMP2
score of all 11 cone-shaped networks with different depths. For visualization

in VAMP coordinates see figure 32.
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Figure 15: State mapping plot of a cone-shaped network with 4 hidden layers. Best

VAMP2 score of all 11 cone-shaped networks with different depths. For visu-
alization in VAMP coordinates see figure 33.
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Figure 16: State mapping plot of a cone-shaped network with 5 hidden layers. Worst

VAMP2 score of all 11 cone-shaped networks with different depths. For visu-
alization in VAMP coordinates see figure 34.
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Figure 17: State mapping plot of a cone-shaped network with 9 hidden layers. 5th best

VAMP2 score of all 11 cone-shaped networks with different depths. For visu-
alization in VAMP coordinates see figure 35.

37



5. Applying VAMPnets to AIBgy

5.3.1. Description of the clusterings

The clustering without hidden layers in figure 14 is able to identify the two main states.
However, the second Ramachandran state (RRRRR) is separated into state 8 and 0.
Since state 8 and 0 do not contain any other major states of the Ramachandran cluster-
ing, this is not too disruptive. The Ramachandran clustering did only seperate between
left and right handed residues, but the Ramachandran plots have shown that there are
secondary minima in the free energy landscape of the residue at (-50, 50) and (50, -50)
as can be seen in figure 8. So it could be that the VAMPnet identifies one or several of
those minima as its own state.

More disturbing is that the fifth (RRRLL) and eighth (RRRRL) Ramachandran state
are merged in state 4. Similarly, the third (LLLRR) and fourth (LLRRR) Ramachan-
dran state are merged in state 9. Those states are close to each other as can be seen in
figure 32 in the appendix.

The clustering with four hidden layers seen in figure 15 has the best VAMP2 score as
can be seen in figure 18b. Therefore the VAMPnets claim that this clustering is the
best one. However, it merges more states than the clustering without hidden layers.
Similar to the clustering without hidden layers, the Ramachandran state 5 (RRRLL)
and 8 (RRRRLL) are merged. This time only a small fraction of the Ramachandran
state 3 (LLLRR) is merged with 4 (LLRRR). Instead, the Ramachandran state 3 is split
up to 3 different states (5, 15, 18). Additionally the Ramachandran state 4 (LLRRR) is
merged with a fraction of the Ramachandran state 7 (LLLLR) into state 5. Thus states
are merged that are separated by more than the flip of a single residue. Moreover, the
Ramachandran states 10 (RLLLL) and 6 (RRLLL) are merged to state 14.

This leads to the conclusion that this clustering is worse than the one without hidden
layer even though it has the better VAMP2 score.

The clustering with 5 hidden layers seen in figure 16 has the worst VAMP2 score and
yields corresponding results. The VAMPnet is only able to detect 6 different states even
though it had the possibility to detect up to 20. A lot of states, including the main
states are merged. VAMPnets state 3 contains LLLLL, LLLLR, LLLRR, a fraction of
RRLLL and minor states. VAMPnets state 12 contains RRRRR, RRRRL, LLRRR,
LRRRR and minor states. Only one more significant state was found. This state 9
contains RLLLL, RRRLL and the rest of RRLLL. The 3 other states only contain minor
Ramachandran states. This clustering was only able to distinguish whether a state is
rather right handed or left handed. Luckily the VAMP2 score tells us already that this
clustering didn’t turn out so well.

A further increase of hidden layers to 9 (see figure 17 does not improve or even deteri-
orates the clusterings. The network with 9 hidden layers only detects 4 states, whereby
one state only contains a minor Ramachandran state. VAMPnets state 16 contains
RRRRR, LRRRR, LLRRR, LLLRR, LLLLR and minor states. Those are all major
states that have an R at the right end. VAMPnets state 8 contains LLLLL, RRLLL,
RLLLL and minor states. The last state 11 contains RRRRL and RRRLL.

It can be said that here even a separation between mostly left handed and mostly right
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handed fails. Still, the VAMP2 score of this clustering is better than the one of the clus-
tering without hidden layers. This can nicely be seen in figure 35 in the appendix as well.

5.3.2. Conclusion for cone-shaped networks with different depths

In conclusion, the networks with few hidden layers merge less states and produce a more
detailed clustering than the networks with many hidden layers. The deeper the network,
the worse the clustering becomes. This is counterintuitive since more complex networks
perform simpler clusterings. Moreover, the universal approximation theorem is not valid
for networks without hidden layer. For this network, it is mathematically not guaranteed
that it is complex enough to produce the desired clustering. Nevertheless, our results
show that this clustering is the best one, VAMPnets produced in this set of clusterings.
One explanation for our observation could be that more complex systems overfit the
problem. This is a common problem in machine learning. Complex networks are sen-
sitive to noise in the training data and start interpreting meaning into it. To validate
this explanation, we can look at the VAMP2 scores of the training and validation data
set. During the training, we tracked the progression of the score on both data sets.
The VAMP2 score was calculated after each epoch and is plotted for the training data
in figure 18a and for the validation data in figure 18b. If the network was overfitting,
one would expect the VAMP2 score of the validation data to decrease with increasing
complexity which in our case means network depth. The VAMP?2 score of the training
data would still increase and become much larger than the validation score. This can not
be observed. Both scores are mostly similar as can be seen in figure 31 in the appendix
as well where we plotted the differences between them. Since the curves of the VAMP2
score of the training data flatten out for late epochs, we can assume that the networks
are well trained. In the curve for 3 hidden layers one can see that at 18 epochs, the score
increases quickly in one epoch. This happens when the network was able to jump out of
a local minimum in its parameter space while minimizing the cost function.

We were also able to verify our assumption from section 4.3 that VAMPnets have prob-
lems in separating more than 10 states.
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Figure 18: VAMP2 scores during training. Figure 31 in the appendix shows the differ-
ences between training and validation score
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Figure 19 shows the final VAMP2 score of the fully trained networks in relation to the
network depth. As can be seen there is no real correlation between VAMP2 score and
network depth visible. This is astounding since we could observe that the clusterings
became worse for deeper networks. During the training, the network tries to optimize
the VAMP2 score, which obviously did improve the clustering. Otherwise the networks
would assign a random state to each trajectory point. This means that there is a
correlation between VAMP2 score and the quality of the clustering. However the VAMP2
score does not directly measure the quality of the clustering even though this is one
assumption of VAMPnets.

Figure 19 suggests that the VAMP2 score of a fully trained network underlies a high
statistical variance. Otherwise it would be hard to explain, why the VAMP2 score of a
network with depth 4 is the best and the one with a depth of 5 is the worst one.
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Figure 19: VAMP2 score in relation to the network depth
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5.4. Fuzzy clusterings of cone-shaped networks

When comparing the clustering results to the Ramachandran clustering or plotting them
as color code in VAMP coordinates, we always look at the hard clustering. After hard
clustering, all information about how certain the network assigns a state to a trajectory
point is lost. We now want to have a closer look at the fuzzy clusterings to see whether
worse clusterings also come with a higher uncertainty in state assignments. Figure 20
shows the histograms of the highest assigned probability for all the fuzzy clusterings in
the trajectory for different network depths. This means that they show how many state
labels were assigned with which certainty. These 6 histograms illustrate the variation
when going to deeper networks.

0 hidden layers 4 hidden layers
0.6
0.8
%) n 0.54
8 2
c c
£ £
2 204
=061 =0
s s
o IS)
) 3031
8044 8
c €
[ [
= Y 0.24
0) 0)
I o
0.24
0.14
0.0 T T T T 0.0 T u u T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Highest fuzzy clustering value Highest fuzzy clustering value
5 hidden layers 6 hidden layers
0.351 0.16
0301 0141
£ £
2 0.251 g 0127
= 5 0.10
5 0.20 4 s
) $0.08
£ 0.154 2
@ g 0.06
QL 0.101 S
o % 0.04 4
0.05 1 0.02
0.00 - 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Highest fuzzy clustering value Highest fuzzy clustering value
9 hidden layers 10 hidden layers
0.25 4 0.4
8 8
£ £
g 0.20 1 8 0.3
@ s
w“ w“
©0.154 °
@ Q
g go02
€ c
@ 0.10 4 @
& &
0.1
0.05 4
0.00 - 0.0 - T T f T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Highest fuzzy clustering value Highest fuzzy clustering value

Figure 20: Histograms of the highest probabilities of the fuzzy clusterings for cone-
shaped networks of different depths
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It can be seen that the certainty of predictions decreases with increasing network depth.
This aligns well with the obeservation that the clustering becomes worse. The network
without hidden layer assigns almost all state labels with a probability higher than 98%.
In contrast, the deepest network with 10 hidden layers assigns almost half of the state
labels a probability of 10% that the state label is correct. This means that the network
is unable to unambiguously select a state for the majority of trajectory points. The
clustering with 4 hidden layers, which had the best VAMP2 score finds state labels with
a high degree of certainty. However, the worst clustering with 5 hidden layers also labels
the majority of points with a certainty larger than 90%. Therefore we can not say that
a bad clustering implies a low degree of certainty in the state assignments. For this set
of networks, at 6 hidden layers, a sharp peak at 0.2 appears. The deeper the networks
become, the more points are found in this peak instead of the one on the very right side.
It is notable that there are certain values that are more likely to appear than others.
The peaks often have a constant distance from each other. This means that the network
is more likely to assign a multitude of a specific value in the fuzzy clustering. The reason
behind this is not clear.

5.5. Reproducibility of clustering results for cone-shaped networks

The training of a neural network uses stochastic gradient descent. Furthermore, the
strengths of connections are initialized randomly when the network is created. To see
how those statistical fluctuations influence the results of the clustering, we train multiple
networks with the same architecture and same choice of hyperparameters on the same
data set and compare their results. The networks were identical to the networks with
4 hidden layers from section 5.3. This network depth was chosen because it generated
the best VAMP2 score out of all network depths Figure 21 shows how the VAMP?2 score
of the training and validation data changes during training. All of the curves seem to
converge, which is why we can assume that we trained long enough. We can already see
that the VAMP2 scores vary by 0.3 in on both data sets. This is half of the variation
observed in figure 18a when comparing networks with different depths. Looking back at
figure 12 it is also half of the difference between the VAMP2 score of the Ramachandran
clustering and the VAMP2 score of the dihedral angles which did not represent a clus-
tering at all.

The examples in figure 22 - 24 show how different the clustering can be when comparing
them to the Ramachandran clustering.
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Figure 21: VAMP2 scores during training. Difference of validation and training score
can be found in figure 36 in the appendix
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Figure 22: Network 5, best VAMP2 score of all 10 identical cone-shaped networks

Figure 23: Network 7, 2nd best VAMP2 score of all 10 identical cone-shaped networks
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Figure 24: Network 6, worst VAMP2 score of all 10 identical cone-shaped networks

The clustering with the best VAMP2 score (Network 5) is able to separates the main
states and most major states. It is shown in figure 22. The Ramachandran state 4,
which represents LLRRR as can be seen in table 2 gets split up in many different states
on the top left side of the plot (state 0 - 3). Furthermore VAMPnets assign a part of
LLRRR to state 16 where the Ramachandran state 9 (LRRRR) can be found as well.
Low populated states are mostly assigned to a main but also to major states. This is
not because we did only cluster on a maximum of 20 states. The contribution of low
populated states to the VAMP2 score is negligible as was shown in figure 12. We can see
that 4 of the 20 states VAMPnets have available are used only for LLRRR even though
the total number of states that can be found in AIBg is higher than 20. Furthermore
only for 18 of the 20 possible states states were assigned.

Figure 23 shows the clustering with the second best VAMP score (Network 7). Here the
Ramachandran state 1 (LLLLL) is split up to 2 states. Unfortunately in one of those
states (state 5) two other major states are included. Those are the Ramachandran states
5 (RRRLL) and 8 (RRRRL) which are quite different to LLLLL. This can nicely be seen
in figure 23 in the appendix. The problem here is that the VAMP2 score suggests that
the clustering was successful even though we would say that being able to identify the
main states LLLLL and RRRRR is the most fundamental requirement of a good clus-
tering.

The example used in figure 13a when illustrating different visualization methods comes
from this set of networks. It shows the clustering found by network 0 which had the 4th
best VAMP2 score of all 10 networks. Given that it represented a clustering that was
able to identify both main and all major states correctly, it is a matter of concern that
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its VAMP2 score is smaller than the one of network 7 in figure 23 which was unable
to detect the main states correctly. We would expect the clustering of network 0 to
have the best VAMP score since it reproduced the Ramachandran clustering the best
for which we have shown that it represents a more or less ideal clustering. Still, this is
not what the VAMP2 score measures.

Figure 24 shows the result with the worst VAMP2 score. Here the main states are sepa-
rated but the Ramachandran main state 1 (LLLLL) is merged with the Ramachandran
major state 10 (RLLLLL). Furthermore only 3 more relevant states are found. State
2 contains the Ramachandran states 5 (RRRLL), 6 (RRLLL), 8 (LRRRR) and minor
states. State 7 contains Ramachandran states 3 (LLLRR), 4 (LLRRR), 7 (LLLLR) and
minor states. VAMPnets correcly identified the Ramachandran state 10 (RLLLL) and
merged it with no other states.

Summing up, we could observe that when applying VAMPnets as a clustering algorithm,
they do not return reproducible clusterings. The quality of the clusterings did vary from
identifiying all main and major states correctly to not being able to find the two main
states. While bad VAMP2 scores below 1.8 hint that many states are merged, a high
VAMP?2 score is not a sufficient criteria for a good clustering as could be seen for network
7. Meanwhile a better VAMP2 score is not a necessary criteria for a better clustering as
network 0 showed in comparison to network 7.

5.6. Rectangular shaped network architectures

As seen in section 5.3, the architecture of a network can radically change the results it
delivers. All networks that were inspected until now had a cone shape. This means that
their architecture was narrow (few nodes per layer) and deep (many hidden layers). We
now want to see whether short networks with many nodes per layer behave differently.
Therefore we choose an examplary network architecture with 4 hidden layers and 300
nodes per layer. For the sake of consistency we also cluster to a maximum of 20 states.
All other parameters were chosen as described in section 5.1.

Figure 27 shows the train and validation scores during training. Figure 26 shows the
comparison of the best and the worst clustering based on the VAMP2 score to the
Ramachandran clustering. Alike the clusterings done with cone-shaped networks, the
clustering with the best VAMP2 score was not the one that reproduced the Ramachan-
dran clustering best. Network 5 did only have the 5th best VAMP2 score out of all 8
networks but was able to separate both main and all major states best.

When looking at the progression of the VAMP2 score during training, it is very astound-
ing that it decreases for some networks with increasing epochs. Usually we would expect
that the score increases monotonic with the epochs as was for the cone-shaped networks
shown in figure 21a. To except an error of the user, we double checked that the net-
work in fact optimized and measured both times the VAMP2 score of the training and
validation data. Even though stochastic gradient descent can temporarily worsen the
results during training on single batches, stochastic optimization algorithms are usually
designed to keep their last best result after one iteration of a training process if they
are unable to improve. However the optimization algorithm is included in the prebuild
tensorflow software package, which is widely used and well optimized. Therefore we
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expect the tensorflow software to perform well and lack an explanation for the strange
behaviour measured during training. However the final networks seem to be well trained
and the clusterings look very similar to the ones done with cone-shaped networks. Even
though they appear to be more stable, they share the same problems. Still, when train-
ing on identical data, they produce varying clusterings. The main problem remains that
the VAMP2 score can not be used to identify the best clustering. The conclusion that
rectangular shaped VAMPnets produce more stable results is on one hand based on the
lower variation of the VAMP2 score which fluctuates only in a range of ~ 0.13 for the
trained networks. On the other hand even the worst clusterings did only merge few
major states together. We also trained a second set of 10 rectangular shaped VAMPnets
that tried to cluster to a maximum of 32 states. The results were similar to the ones
shown in figure 27 to 25. In the set with 32 states were also no networks that clustered
the majority of states together like the cone-shaped network in figure 24. This supports
the conclusion that rectangular VAMPnets are more stable.

100 0
oy

§ R
\
\

LB oo
022 2iiiy

Vﬁvﬂﬂennz
ov v o
6 9,a%

°

[y
v

= 9e+05.
i 3 O 1500000 1200000 2

Figure 25: Network 5, 5th best VAMP2 score of 8 identical rectangular shaped networks.
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Figure 26: Best and worst examples of clustering results of 8 identical rectangular shaped
networks based on VAMP2 score.
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Figure 27: VAMP2 of rectangular shaped networks scores during training. Difference of
validation and training score can be found in figure 37 in the appendix
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5.7. Different interpretations of the fuzzy clustering

As hinted in section 2.8.2, the hard clustering can be derived in different ways from the
fuzzy clustering:

1. The intuitive way is to accept the state with the highest probability in the fuzzy
clustering as the state in the hard clustering.

2. The tutorials included in the official VAMPnets repository [30] calculated a mean-
free fuzzy clustering from the original one. In each component is a likelihood that
represented the meanfree probabilities of the original fuzzy clustering. Afterwards,
the hard clustering was done by classifying each point with the state that had the
highest likelihood in the meanfree fuzzy clustering. Probably this is done to reduce
the number points in minor states that are merged into a main states. However,
calculating meanfree probabilities undermines the concept of probabilities being
positive and normalized to one. Given that the activation function of the out-
put layer was specifically constructed to give the output layer the appearence of a
probability, this approach seems counter intuitive.

We now want to compare the two different hard clusterings that are build on the same
fuzzy clusterings by comparing which states are labeled differently. Figure 28a shows
an example for a cone-shaped network that clustered AIBg well and figure 28b one that
was unable to find a good clustering. The top half of the state mapping plot represents
the meanfree clustering while the lower half represents the original hard clustering.

As expected, in the meanfree clustering some of the points that previously belonged to
the main state are now distributed among other states. However the changes are only
minor and don’t change the clustering fundamentally. In fact, for the best performing
network in figure 28a, the differences are almost not visible. Here a minimal fraction of
one one main state (10) in the original clustering is assigned to the meanfree state 5.
For the worst network in figure 28b the differences are more significant. A fraction of a
main state (13) in the original clustering is assigned to the major state 2. Additionally
it can be seen that the meanfree clustering finds more states in this case. It divides state
7 so that a fraction of state 7 is now the new state 14. Still the clustering in figure 28b
is only slightly finer and the new states are too low populated to represent major states.
Taking into concern that the motivation of the meanfree clustering seems arbitrary, the
changes in the clustering do not jusitify this approach as being better that the original
hard clustering.

We could observe that the good clustering changed less than the bad one. This seems
reasonable since states are lower populated when finding more states. This corresponds
with lower probabilities. Therefore the sum over all probabilities for one states is lower
as well and the probabilities in one trajectory point are changed less when calculating
the meanfree version of the clustering.

o1



5. Applying VAMPnets to AIBy

43210 61

(b) Network 6 (see figure 24), worst VAMP2 score.

Figure 28: Differences between meanfree clustering (top half circle) and original hard
clustering (bottom half circle) for cone-shaped networks
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6. Summary

Finally we want to summarize the results of our studys on our model system AIBg with
VAMP and VAMPnets. A more detailed deduction of our conclusions can be found at
the end of the corresponding chapters in section 4 and 5.

6.1. Ramachandran clustering

The Ramachandran plots of the inner 5 residues have shown that most conformations
of AIBg clearly have a right or left handed orientation at each residue. Therefore a
clustering that separates states by the chiral orientations of the residues is physically
meaningful and covers the system dynamics well. Such a combinatoric Ramachandran
clustering was therefore used as a reference for the clusterings done with VAMPnets.

6.2. VAMP

We used VAMP with dihedral angles of the inner 5 residues as input coordinates to find
the slowest processes and to do a dimensionality reduction afterwards. The dimensional-
ity reduction done with VAMP produces similar results as Principal component analysis
(PCA) on AIBg. We saw a a strong correlation between the first 5 PCs and the first
5 VAMP coordinates. This was expected for AIBg since TICA finds the same correla-
tion to PCA. VAMP is expected to behave similar since it also rates the importance
of coordinates by their timescale. The similarity of coordinates with high variance to
coordinates with high implied timescales is due to the choice of our test system and is
not generally given as previous studies on alanine dipeptide have shown [11]. Similar to
TICA, the choice of the lag time 7 influences the collective variables found by VAMP.
For large 7, the correlation between PCs and VAMP coordinates is reduced (see 4) while
for small 7, Markovianity of the dynamics is no longer given (see 4.2).

The analysis of the singular values of the Koopman operator can give information about
the relevant number of collective variables that should be kept for clustering algorithms.
As seen in figure 11, only 5 dimensions are required to represent the slowest processes
of AIBg. This matches with experience from PCA, where 5 dimensions were deemed to
be sufficient for AIBg as well [21].

In contrast to TICA, VAMP provides a Chapman Kolmogorov test to check if the ob-
served dynamics are Markovian. We have seen in section 4.2 that for AIBg, the approx-
imation of the dynamics as a Markov process should only be made with 7 > 1 ns. The
timescales of dynamics in the ¢ and 1 angle of each residue of AIBg differ by orders of
magnitude. Lag times > 1 ns hide the fast dynamics in the ¥ angle, so that only the
changes of chiral orientation implied by transitions in the ¢ angle are resolved.

VAMP can also be used to build an Markov state model. When applying VAMP on vec-
torized state trajectories, the resulting Koopman operator is equivalent to the transition
matrix of a Markov state model.

The analysis of the Ramachandran clustering with VAMP has shown that the VAMP2
score (see equation (33)) is mainly influenced by the 9 largest eigenvalues of the Koop-
man operator. This leads to the conclusion that it is possible to find a clustering to only

93



6. Summary

10 states that has a similar VAMP2 score as the Ramachandran clustering with 32 well
defined states.

6.3. VAMPnets

Clusterings with 7 = 1.2 ns and various different architectures of VAMPnets have shown
that it is in principle possible to detect the 10 most populated states of AIBg (see
figure 13). The lag time 7 was chosen based on the previous study with VAMP. Those
states also contain the main dynamics. Low populated states were rarely detected. The
conclusion that VAMPnets struggle to find more than 10 meaningful states could be
confirmed in all clusterings. Even though our Ramachandran clustering showed that
there are 32 well defined states in AIBg and we gave VAMPnets the possibility to find
up to 20 states, most of the time less states were found. In most clusterings VAMPnets
merged highly populated states that differed only by the chiral orientation at one residue.
When looking at VAMPnets as a ML algorithm that tries to find patterns, it is reasonable
that states that only differ in one detail can be merged by accident.

Even though VAMPnets reduce the number of different steps for the analysis of MD data,
the claim that it reduces the influence of the modelers expertise can not be confirmed.
In the original workflow via PCA and density based clustering, the user had to select the
number of collective variables d, a cluster radius r and the minimal population p,,;,. All
of those parameters have a clear physical meaning and knowledge of the system helps
for choosing suitable values. VAMPnets require many more parameters as described in
section 5.1. While some of them, like the singular value cutoff ¢, do not influence the
clustering results if not chosen too poorly, others like the network architecture have a
critical influence.

In the paper of Noe et al. [6], VAMPnets are designed to transform a high dimensional
trajectory to a low dimensional state clustering. Therefore their cone-shaped architec-
ture narrows with increasing network depth. In our case, the choice of dihedral angles
as input coordinates previously reduced the dimensionality of the data. Since we want
to find more states than we have input dimensions, our networks have to widen up with
increasing depth. This change is not expected to influence the functionality of VAMP-
nets badly since it only reduces the amount of unimportant information provided to
the networks. It is rather expected that VAMPnets can more easily detect the relevant
states when there is less noise in the data.

We have seen that the choice of network architecture has a huge influence on the clus-
tering results. The adaption of the original architecture of deep cone-shaped networks
proposed in the VAMPnets paper [6] produced clearly worse results than networks with
less hidden layers.

The choice of suitable parameter is compounded by the fact that many of them like
the network architecture lack a clear physical interpretation. While having a general
intuition that more complex systems should require more complex networks, we do not
have an intuition how to achieve this complexity best. The multitude of possibilities
how many hidden layers should be combined with which number of nodes in each layer
leaves many combinations that appear to be equally complex.

Our analysis has shown that deep cone-shaped networks are often unable to separate the
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10 major states of the system correctly (see 5.3). Simpler networks represented by cone-
shaped networks with 4 hidden layers and 10 - 20 nodes per layer were able to detect
the main 10 states more often and produced better results. An approach to increase the
complexity of the network by constructing wider networks with 300 nodes in 4 hidden
layers each (see 5.6) produced similar results.

While we used VAMPnets on the well understood AIBg, the method is designed to be
a scientific analysis tool to acquire knowledge about unfamiliar peptides. In our study,
applying VAMPnets multiple times with identical parameters on the same data set has
yielded highly varying results. While some clusterings separated the 10 most populated
states correctly, others even failed to isolate the 2 main states. A scientific method
of analysis is expected to be yield reproducible results. Due to the inevitable use of
stochastic methods in machine learning on large data sets, exact reproducibility can not
be given by design. Ideally, we would expect converging results when the networks are
trained long enough. We have seen that parameter wise identical copies of VAMPnets
converge to different clusterings.

Since no general convergence is given, we could hope that the VAMP2 score can be used
to identify the best result out of a set of trained networks. We saw that the best clus-
terings did not have the best VAMP2 score in both sets of cone-shaped and rectangular
shaped networks. If we had not known the expected states from the Ramachandran clus-
tering beforehand, we would not be able to detect the best result via VAMP2 score. This
is unfortunate since some copies of the network were able to find the 10 most populated
states correctly but were not rated best.

Recent studies by the group of Ferguson encountered the problem of highly varying
clustering results as well [31]. The new state-like coordinates VAMPnets find are slow
since optimizing the VAMP2 score does implicitely increase timescales. The strongly
nonlinear nature of neural networks allows to find a more arbitrary feature transforma-
tion that algorithms like TICA. Therefore the group of Ferguson tried to use VAMPnets
as dimensionality reduction algorithm, where they interpreted the output of VAMPnets
not as clustering but a set of slow collective variables that could be used by a different
clustering algorithm to find states. While producing better clusterings than the original
VAMPnets, the intention of those so called ”statefree VAMPnets” contradicts the idea
to simplify the analysis pipeline. Here, VAMPnets become just another dimensionality
reduction algorithm in the common workflow.

We now want to reflect why the VAMP2 score appears to be an inaccurate measure for
the quality of a clustering. Our main criterion for a good clustering is that the states
are separated in coordinate space. Ideally, the state borders are at at the highest free
energy barriers. Since the VAMP2 score depends on the timescales resulting from the
clustering of the trajectory, VAMPnets are expected to do a separation at the highest
potential barriers. However, the eigenvalues of the Koopman operator are squared when
calculating the VAMP2 score. Therefore the total score is dominated by the slowest
processes. An additional fast processes does not increase the VAMP2 score much. We
have seen that it is possible to find a clustering to 10 states that already has an optimal
VAMP?2 score of ~ 2. Since the addition of another fast processes that would need the
isolation of minor states does not change the VAMP2 score significantly, the network
does not see a necessity in finding minor states. This is why VAMPnets are only able to
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resolve a minority of the 32 states in AIBg.

Another problematic aspect is that the VAMP2 score is directly calculated from the
Koopman operator of the outputs of VAMPnets. Those outputs are vectors with prob-
ability like entries that describe the certainty of a point being assigned to a state (fuzzy
clustering). We are interested in a hard clustering where each point of the trajectory has
only one state label. A transition from a fuzzy to a hard clustering removes all informa-
tion except the location of the maximum from the probability distribution. Therefore
all information about the evolution of the probabilities that were not the highest entries
is lost in the process. This is problematic, since VAMPnets optimize the timescales of
processes in all vector components. In the hard clustering, processes in non maximum
components do not exist anymore. As seen in figure 20, there are networks, where 90% of
the probability is distributed among other states for almost half of the trajectory points.
Therefore the implied timescales in the fuzzy clustering are expected to be higher than
the timescales in the Markov state model that is build from the hard clustering. To
estimate the influence of this effect, further study is required. It is expected that some
network architectures are more vulnerable since the distribution of probabilities in the
fuzzy clustering varies highly as figure 20 has shown.

In the end, we want to think about two possible improvements to VAMPnets and discuss
if they could provide solutions for the discovered problems.

A possible improvement regarding the dynamics in the fuzzy clustering could be an
additional layer behind the original output layer. In this layer, the hard clustering of
the fuzzy clustering is calculated. When building VAMPnets with this new output layer,
the VAMP2 score would be calculated directly from the processes in the hard and not
the fuzzy clustering which ensures that only timescales of processes visible in an Markov
state model are taken into account.

Another improvement was suggested in a tutorial of the official VAMPnets repository
[30]. They proposed a meanfree interpretation of the fuzzy clustering. In the cases
we studies, we saw that this approach generates only minor improvements for networks
that performed badly beforehand. The clusterings of networks that already performed
relatively well in did not change significantly. However, when using meanfree fuzzy
clusterings, the interpretation of fuzzy clustering entries as probabilities is lost, what
makes this modification problematic.

While modifications may improve the quality of clusterings slightly, the main problem
remains that the VAMP2 score does not measure the quality of a clustering in terms
of geometric separation precise enough and is unable to resolve minor states. AIBg
is a relatively simple system. If we were to move on to larger peptides where even
more states are to be detected, we expect VAMPnets to perform worse. Additionally
we expect to encouter major problems when analyzing systems where processes with
large timescales are not necessarily important processes. To really fix the problems of
VAMPnets we would need another metric than the VAMP2 score that better represents
our understanding of a good clustering.
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A.1l. Proof that 1-norm of eigenvectors with eigenvalue # 1 is 0

Let M be an n x n transitionmatrix with normalized rows. V is an orthogonal matrix.

ZMi’j =1 Mi,j > 0 (36)
J
M =V~IAV with A = diag(\g, ..., \n) (37)
Proof:
ZMz‘,j =1 (38)
J
DY MV iaViy =1 1> Vi (39)
ik i

D MV D ViV ik = Vai (40)

3k i i
> NeVijbngk =Y Vi (41)

Gk i

)\n Z Vn,j = Z Vn,i (42>
j i
This equation is true for
Ap =1 v > Vii=0 (43)
O

Therefore the 1 norm of all vectors with and eigenvalue different than 1 has to be 0
This Proof was provided by Matthias Post.
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A.2. Supplementary images

Correlation between PCA and VAMP coordinates for T = 0.04ns
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Figure 29: Projections from VAMP (y-axis) and PCA (x-axis) of the AIBg MELD data
points. Every 10th point is plotted. For VAMP a lag time of 7 = 0.04 ns (1
frame) was chosen. The color code is a state label found with density based
clustering.
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Correlation between PCA and VAMP coordinates for T = 6.4ns

2

VAMP 1

VAMP 2

VAMP 3

& & 4

VAMP 4
L
b
.

B e T T S S
b

& bk

L

VAMP 5

F S S L T S I Y S

R N L. T YT NS CR O I S S

B S R T T T

EUEE ] R a3 o 1 5 2 3 6
PCA 1 PCA 2 PCA3 PCA 4

Figure 30: Projections from VAMP (y-axis) and PCA (x-axis) of the AIBg MELD data
points. Every 10th point is plotted. For VAMP a lag time of 7 = 6.4 ns (160
frames) was chosen. The color code is a state label found with density based
clustering.
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Figure 31: Deviation of VAMP2 scores of training data and validation data after each
epoch of training for cone-shaped networks with different depths
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ard clustering of cone shaped VAMPnet with 0 hidden layers
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Figure 32: Network without hidden layer. 6th best VAMP2 score of all 11 cone-shaped
networks with different depths.
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ard clustering of cone shaped VAMPnet with 4 hidden layers
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Figure 33: Cone-shaped network with 4 hidden layers. Best VAMP2 score of all 11
cone-shaped networks with different depths.
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ard clustering of cone shaped VAMPnet with 5 hidden layers
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Figure 34: Cone-shaped network with 5 hidden layers. Worst VAMP2 score of all 11
cone-shaped networks with different depths.

63



A. Appendix

ard clustering of cone shaped VAMPnet with 9 hidden layers
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Figure 35: Cone-shaped network with 9 hidden layers. 5th best VAMP2 score of all 11
cone-shaped networks with different depths.
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Figure 36: Deviation of VAMP2 scores of training data and validation data after each

epoch of training for identical copies of cone-shaped networks with 4 hidden
layers.
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Figure 37: Deviation of VAMP2 scores of training data and validation data after each
epoch of training for rectangular shaped networks with 4 hidden layers.
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